Difference between revisions of "ApCoCoA-1:Dicyclic groups"
From ApCoCoAWiki
Line 20: | Line 20: | ||
Define CreateRelationsDicyclic() | Define CreateRelationsDicyclic() | ||
Relations:=[]; | Relations:=[]; | ||
− | + | ||
+ | // Add the relation a^{2n} = 1 | ||
+ | Append(Relations, [[a^(2*MEMORY.N)], [-1]]); | ||
+ | |||
// Add the relation a^{n} = b^2 | // Add the relation a^{n} = b^2 | ||
Append(Relations, [[a^(MEMORY.N)], [-b,b]]); | Append(Relations, [[a^(MEMORY.N)], [-b,b]]); | ||
− | |||
− | |||
− | |||
// Add the relation b^{-1}ab = a^{-1} | // Add the relation b^{-1}ab = a^{-1} | ||
Line 32: | Line 32: | ||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
+ | |||
+ | Relations:=CreateRelationsDicyclic(); | ||
+ | Relations; | ||
+ | |||
+ | Gb:=NC.GB(Relations); | ||
+ | Gb; |
Revision as of 08:42, 23 August 2013
Description
The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1.
Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>
Reference
Coxeter, H. S. M., "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University, 1974.
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of Dicyclic group (note that the order is 4N) MEMORY.N:=5; Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsDicyclic() Relations:=[]; // Add the relation a^{2n} = 1 Append(Relations, [[a^(2*MEMORY.N)], [-1]]); // Add the relation a^{n} = b^2 Append(Relations, [[a^(MEMORY.N)], [-b,b]]); // Add the relation b^{-1}ab = a^{-1} Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]); Return Relations; EndDefine; Relations:=CreateRelationsDicyclic(); Relations;
Gb:=NC.GB(Relations); Gb;