Difference between revisions of "ApCoCoA-1:Dihedral groups"
From ApCoCoAWiki
Line 19: | Line 19: | ||
Relations:=[]; | Relations:=[]; | ||
− | // add the relation r^{n} = 1 | + | // add the relation r^{n} = 1 |
− | |||
Append(Relations,[[r^MEMORY.N],[1]]); | Append(Relations,[[r^MEMORY.N],[1]]); | ||
Revision as of 07:36, 16 August 2013
Description
The dihedral group of degree n is the group of symmetries of a regular polynom. This non-abelian group consists of 2n elements, n rotations and n reflections. Let r be a single rotation and s be an arbitrary reflection. Then the group has the following representation
Dih(n) = <r,s | r^{n} = s^{2} = s^{-1}rs = r^{-1}>
(Reference: Reflection Groups and Invariant Theory, Richard Kane, Springer 2001)
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of Dihedral group MEMORY.N:=5; Use ZZ/(2)[r,s]; NC.SetOrdering("LLEX"); Define CreateRelationsDehidral() Relations:=[]; // add the relation r^{n} = 1 Append(Relations,[[r^MEMORY.N],[1]]); // add the relation s^2 = 1 Append(Relations,[[s^2],[1]]); // add the relation s^{-1}rs = r^{-1} Append(Relations,[[s,r,s],[r^(MEMORY.N-1)]]); Return Relations; EndDefine; Relations:=CreateRelationsDehidral(); Relations; GB:=NC.GB(Relations); GB;