Difference between revisions of "ApCoCoA-1:Symbolic data Computations"
From ApCoCoAWiki
Line 1: | Line 1: | ||
− | === Computation | + | === Computation of [[:ApCoCoA:Symbolic data|Non-abelian Groups]] === |
− | ==== <div id="Baumslag_groups"> | + | ==== <div id="Baumslag_groups">[[:ApCoCoA:Symbolic data#Baumslag_groups|Baumslag groups]]</div> ==== |
− | Recall that the Baumslag-Solitar groups have the following presentation | + | Recall that the Baumslag-Solitar groups have the following presentation. |
BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers | BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers | ||
+ | XML data: | ||
+ | <vars>a[1],a[2],b[1],b[2]</vars> | ||
+ | <params>m,n</params> | ||
+ | <rels> | ||
+ | <ncpoly>a[1]*a[2]-1</ncpoly> | ||
+ | <ncpoly>a[2]*a[1]-1</ncpoly> | ||
+ | <ncpoly>b[1]*b[2]-1</ncpoly> | ||
+ | <ncpoly>b[2]*b[1]-1</ncpoly> | ||
+ | <ncpoly>b[1]*a[1]^{m}-a[1]^{n}*b[1]</ncpoly> | ||
+ | </rels> | ||
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows. | We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows. | ||
/*Use the ApCoCoA package ncpoly.*/ | /*Use the ApCoCoA package ncpoly.*/ | ||
Line 37: | Line 47: | ||
EndDefine; | EndDefine; | ||
− | ==== <div id="SL_3_8"> | + | ==== <div id="SL_3_8">SL(3,8)</div> ==== |
/* SL(3,8) has a presentation with generators a, b, c, d, e and the following relators | /* SL(3,8) has a presentation with generators a, b, c, d, e and the following relators | ||
a^2, b^2, c^7, de, ed, | a^2, b^2, c^7, de, ed, |
Revision as of 12:47, 1 July 2013
Computation of Non-abelian Groups
Recall that the Baumslag-Solitar groups have the following presentation.
BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers
XML data:
<vars>a[1],a[2],b[1],b[2]</vars> <params>m,n</params> <rels> <ncpoly>a[1]*a[2]-1</ncpoly> <ncpoly>a[2]*a[1]-1</ncpoly> <ncpoly>b[1]*b[2]-1</ncpoly> <ncpoly>b[2]*b[1]-1</ncpoly> <ncpoly>b[1]*a[1]^{m}-a[1]^{n}*b[1]</ncpoly> </rels>
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows.
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a[1..2],b[1..2]]; NC.SetOrdering("LLEX"); A1:=[[a[1],a[2]],[1]]; A2:=[[a[2],a[1]],[1]]; B1:=[[b[1],b[2]],[1]]; B2:=[[b[2],b[1]],[1]]; -- Relation ba^2=a^3b. Change 2 and 3 in "()" to make another relation R:=[[b[1],a[1]^(2)],[a[1]^(3),b[1]]]; G:=[A1,A2,B1,B2,R]; -- Enumerate a partial Groebner basis (see NC.GB for more details) NC.GB(G,31,1,100,1000);
/*Use the ApCoCoA package gbmr.*/ -- See NCo.BGB for more details on the parameters DB, LB and OFlag. Define BS(M,N,DB,LB,OFlag) $apcocoa/gbmr.SetX("aAbB"); $apcocoa/gbmr.SetOrdering("LLEX"); G:= [["aA",""],["Aa",""],["bB",""],["bB",""]]; BA:= "b"; AB:= "b"; For I:= 1 To ARGV[1] Do BA:= BA + "a"; EndFor; For I:= 1 To ARGV[2] Do AB:= "a" + Ab; EndFor; Append(G,[BA,AB]); Return $apcocoa/gbmr.BGB(G,DB,LB,OFlag); EndDefine;
SL(3,8)
/* SL(3,8) has a presentation with generators a, b, c, d, e and the following relators a^2, b^2, c^7, de, ed, (cb)^2, (ba)^3, (acac^6)^2, c^2ac^6ac^5ac, dbe^2, (ce)^2cd^2 aead(ae)^2babd^2, eadae^2babd^2(ae)^2babd^2, ec^6daecdc^6aca, ec^6daecec^6d^2ae^2cd^2, ec^6daecec^6d^2ae^2cd^2. The following commands check whether the last relator, i.e. ec^6daecec^6d^2ae^2cd^2 can be rewritten by the others, via Groebner basis techniques. */ Use ZZ/(2)[a,b,c,d,e]; G:=[[[a^2], [1]], [[b^2], [1]], [[c^7], [1]], [[d, e], [1]], [[e, d], [1]], [[c, b, c, b], [1]], [[b, a, b, a, b, a], [1]], [[a, c, a, c^6, a, c, a, c^6], [1]], [[c^2, a, c^6, a, c^5, a, c], [1]], [[b, d, b, e^2], [1]], [[c, e, c, e, c, d^2], [1]], [[a, e, a, d, a, e, a, e, b, a, b, d^2], [1]], [[e, a, d, a, e^2, b, a, b, d^2, a, e, a, e, b, a, b, d^2], [1]], [[e, c^6, d, a, e, c, d, c^6, a, c, a], [1]]]; F:=[ [e,c^6, d, a, e, c, e, c^6, d^2, a, e^2, c, d^2] ]; Gb:=NC.GB(G,31,1,100,5000); NC.NR(F,Gb);