Difference between revisions of "Group Examples"
Line 2: | Line 2: | ||
==== <div id="Baumslag_groups">Baumslag groups</div> ==== | ==== <div id="Baumslag_groups">Baumslag groups</div> ==== | ||
− | The | + | The Baumslag-Solitar groups are examples of two-generator one-relator groups. |
− | + | BS(m,n) = <a,b | b*a^m = a^n*b> | |
− | |||
− | BS(m,n) = <a, b | b*a^m = a^n*b> | ||
where m, n are natural numbers. [[:ApCoCoA:Symbolic data Computations#Baumslag_groups|Computations of Baumslag groups]]. | where m, n are natural numbers. [[:ApCoCoA:Symbolic data Computations#Baumslag_groups|Computations of Baumslag groups]]. | ||
(Reference: G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. , 689 (1962) pp. 199–201.) | (Reference: G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. , 689 (1962) pp. 199–201.) | ||
− | Another variation of the Baumslag groups called the Baumslag-Gersten group is defined by: | + | |
+ | Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by: | ||
BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^2> | BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^2> | ||
==== Braid groups ==== | ==== Braid groups ==== | ||
− | For a natural number n the | + | For a natural number n, the Braid group has n strands and n-1 generators: |
− | B(n) = <g_1 | + | B(n) = <g_1,...,g_(n - 1) | g_i*g_j = g_j*g_i for |i-j| >= 2, g_i*g_{i+1}*g_i = g_{i+1}*g_i*g_{i+1} for 1 <= i <= n-2> |
− | + | (Reference: W. Magnus, Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.) | |
− | + | ||
+ | |||
+ | ==== <div id="Cyclic_group">Cyclic group</div> ==== | ||
+ | C_n = <a | a^n = 1> | ||
+ | |||
− | + | ==== <div id="Dicyclic_group">Dicyclic group</div> ==== | |
+ | DC_n = <a,b | a^{2n} = 1, a^n = b^2, bab^{-1} = a^{-1}> | ||
Line 26: | Line 30: | ||
Dih_n = <r,s | r^n = s^2 = (rs)^2 = 1> | Dih_n = <r,s | r^n = s^2 = (rs)^2 = 1> | ||
− | |||
− | |||
− | |||
− | |||
− | ==== <div id=" | + | ==== <div id="vonDyck_groups">von Dyck groups</div> ==== |
− | + | The [ftp://apcocoa.org von Dyck] groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb: | |
+ | D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n}> | ||
− | |||
− | |||
==== <div id="Free_abelian_group">Free abelian group</div> ==== | ==== <div id="Free_abelian_group">Free abelian group</div> ==== | ||
Z^n = <a_1,...,a_n | [a_i,a_j] = 1 for all i,j> | Z^n = <a_1,...,a_n | [a_i,a_j] = 1 for all i,j> | ||
+ | |||
==== <div id="Free_group">Free group</div> ==== | ==== <div id="Free_group">Free group</div> ==== | ||
− | F(n) = < | + | F(n) = <a_1,...,a_n | a_ia_i^{-1} = a_i^{-1}a_i = 1> |
− | |||
− | |||
− | ==== <div id=" | + | ==== <div id="Fibonacci_groups">Fibonacci groups</div> ==== |
− | + | The [ftp://apcocoa.org Fibonacci] groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. These groups have the following finite presentation: | |
+ | F(2,m) = <x_1,...,x_m | x_{i}x_{i+1} = x_{i+2}> | ||
+ | |||
− | ==== <div id=" | + | ==== <div id="Heisenberg_group">Heisenberg groups</div> ==== |
− | + | H(2k+1) = <a_1,...,a_k,b_1,...,b_k,c | [a_i,b_i] = c,[a_i,c] = [b_i,c], [a_i,b_j] = 1 for all i != j> | |
− | |||
− | ==== <div id=" | + | ==== <div id="Higman_group">Higman group</div> ==== |
− | + | H = <a,b,c,d | a^{-1}ba = b^2,b^{-1}cb = c^2,c^{-1}dc = d^2,d^{-1}ad = a^2> | |
− | |||
Line 62: | Line 60: | ||
The [ftp://apcocoa.org Ordinary Tetrahedon] groups are groups with the following representation where e_i >= 2 and fi >= 2 for all i. | The [ftp://apcocoa.org Ordinary Tetrahedon] groups are groups with the following representation where e_i >= 2 and fi >= 2 for all i. | ||
G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1> | G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1> | ||
+ | |||
+ | |||
+ | ==== <div id="Thompson_groups">Thompson group</div> ==== | ||
+ | T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^2] = 1> | ||
+ | = <x_0,x_1,x_2,... | x_k^{-1}x_nx_k = x_{n+1} for all k < n> | ||
+ | with a = x_0, x_n = a^{1-n}ba^{n-1} | ||
Line 71: | Line 75: | ||
The spherical case: 1/l + 1/m + 1/n > 1 | The spherical case: 1/l + 1/m + 1/n > 1 | ||
The hyperbolical case: 1/l + 1/m + 1/n < 1 | The hyperbolical case: 1/l + 1/m + 1/n < 1 | ||
+ | |||
=== Old Data at Ftp=== | === Old Data at Ftp=== | ||
ftp://apcocoa.org/pub/symbolic_data | ftp://apcocoa.org/pub/symbolic_data |
Revision as of 12:26, 1 July 2013
Non-abelian Groups
Baumslag groups
The Baumslag-Solitar groups are examples of two-generator one-relator groups.
BS(m,n) = <a,b | b*a^m = a^n*b>
where m, n are natural numbers. Computations of Baumslag groups.
(Reference: G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. , 689 (1962) pp. 199–201.)
Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by:
BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^2>
Braid groups
For a natural number n, the Braid group has n strands and n-1 generators:
B(n) = <g_1,...,g_(n - 1) | g_i*g_j = g_j*g_i for |i-j| >= 2, g_i*g_{i+1}*g_i = g_{i+1}*g_i*g_{i+1} for 1 <= i <= n-2>
(Reference: W. Magnus, Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.)
Cyclic group
C_n = <a | a^n = 1>
Dicyclic group
DC_n = <a,b | a^{2n} = 1, a^n = b^2, bab^{-1} = a^{-1}>
Dihedral groups
The Dihedral group of degree n (denoted by Dih_n) is the group of symmetries of a regular polynom. This non-abelian group consists of 2n elements, n rotations and n reflections. Let r be a single rotation and s be an arbitrary reflection. Then the group has the following representation
Dih_n = <r,s | r^n = s^2 = (rs)^2 = 1>
von Dyck groups
The von Dyck groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb:
D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n}>
Free abelian group
Z^n = <a_1,...,a_n | [a_i,a_j] = 1 for all i,j>
Free group
F(n) = <a_1,...,a_n | a_ia_i^{-1} = a_i^{-1}a_i = 1>
Fibonacci groups
The Fibonacci groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. These groups have the following finite presentation:
F(2,m) = <x_1,...,x_m | x_{i}x_{i+1} = x_{i+2}>
Heisenberg groups
H(2k+1) = <a_1,...,a_k,b_1,...,b_k,c | [a_i,b_i] = c,[a_i,c] = [b_i,c], [a_i,b_j] = 1 for all i != j>
Higman group
H = <a,b,c,d | a^{-1}ba = b^2,b^{-1}cb = c^2,c^{-1}dc = d^2,d^{-1}ad = a^2>
Ordinary Tetrahedon groups
The Ordinary Tetrahedon groups are groups with the following representation where e_i >= 2 and fi >= 2 for all i.
G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1>
Thompson group
T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^2] = 1> = <x_0,x_1,x_2,... | x_k^{-1}x_nx_k = x_{n+1} for all k < n> with a = x_0, x_n = a^{1-n}ba^{n-1}
Triangle groups
The Triangle groups describe the application of reflections across the sides of a triangle (A,B,C) with the three reflections a,b,c and can be represented as the following:
Triangle(l,m,n) = {a,b,c | a^2 = b^2 = c^2 = (ab)^l = (bc)^m = (ca)^n = 1}
There are three different cases depending on the choice of the parameters l,m,n:
The euclidian case: 1/l + 1/m + 1/n = 1 The spherical case: 1/l + 1/m + 1/n > 1 The hyperbolical case: 1/l + 1/m + 1/n < 1