Difference between revisions of "ApCoCoA-1:NC.Interreduction"
Line 3: | Line 3: | ||
<short_description> | <short_description> | ||
Interreduction of a LIST of polynomials in a non-commutative polynomial ring. | Interreduction of a LIST of polynomials in a non-commutative polynomial ring. | ||
− | |||
− | |||
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
Line 10: | Line 8: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | Note that, given a word ordering, a set of non-zero polynomial <tt>G</tt> is called <em>interreduced</em> if, for all <tt>g</tt> in <tt>G</tt>, no element of <tt>Supp(g)</tt> is a multiple of any element in <tt>LW{G\{g}}</tt>. | ||
+ | <par/> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> |
Revision as of 19:34, 14 May 2013
NC.Interreduction
Interreduction of a LIST of polynomials in a non-commutative polynomial ring.
Syntax
NC.Interreduction(G:LIST):LIST
Description
Note that, given a word ordering, a set of non-zero polynomial G is called interreduced if, for all g in G, no element of Supp(g) is a multiple of any element in LW{G\{g}}.
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param G: a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST, which is an interreduced set of G.
Example
USE QQ[x[1..2],y[1..2]]; NC.SetOrdering(<quotes>LLEX</quotes>); F1:= [[x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3],[5]]; -- x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 F2:= [[y[1],x[2]^2], [y[2],x[2]^2]]; -- y[1]x[2]^2+y[2]x[2]^2 F3:= [[x[1],y[1]],[x[2]]]; -- x[1]y[1]+x[2] NC.Interreduction([F1,F2,F3]); [[[y[2], x[1]^2, x[2]^3], [1/9x[1], y[2], x[2]^2], [-5/9]], [[y[1], x[2]^2], [y[2], x[2]^2]], [[x[1], y[1]], [x[2]]]] -------------------------------
See also