Difference between revisions of "ApCoCoA-1:NC.LC"
Line 18: | Line 18: | ||
USE QQ[x[1..2]]; | USE QQ[x[1..2]]; | ||
F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 | F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 | ||
− | NC.SetOrdering( | + | NC.SetOrdering(<quotes>LLEX</quotes>); |
NC.LC(F); | NC.LC(F); | ||
[1] | [1] | ||
------------------------------- | ------------------------------- | ||
− | NC.SetOrdering( | + | NC.SetOrdering(<quotes>LRLEX</quotes>); |
NC.LC(F); | NC.LC(F); | ||
[4] | [4] | ||
------------------------------- | ------------------------------- | ||
− | NC.SetOrdering( | + | NC.SetOrdering(<quotes>ELIM</quotes>); |
NC.LC(F); | NC.LC(F); | ||
[1] | [1] | ||
------------------------------- | ------------------------------- | ||
− | NC.SetOrdering( | + | NC.SetOrdering(<quotes>DEGRLEX</quotes>); |
NC.LC(F); | NC.LC(F); | ||
Revision as of 18:00, 14 May 2013
NC.LC
Leading coefficient of a non-zero polynomial in a non-commutative polynomial ring.
Syntax
NC.LC(F:LIST):INT or RAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param F: a non-zero non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: an INT or a RAT, whhich is the leading coefficient of F with respect to the current word ordering.
Example
USE QQ[x[1..2]]; F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 NC.SetOrdering(<quotes>LLEX</quotes>); NC.LC(F); [1] ------------------------------- NC.SetOrdering(<quotes>LRLEX</quotes>); NC.LC(F); [4] ------------------------------- NC.SetOrdering(<quotes>ELIM</quotes>); NC.LC(F); [1] ------------------------------- NC.SetOrdering(<quotes>DEGRLEX</quotes>); NC.LC(F); [1] -------------------------------
See also