Difference between revisions of "ApCoCoA-1:NC.IsHomog"
Line 14: | Line 14: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | + | USE QQ[x[1..2],y[1..2]]; | |
− | F1 := [[1, | + | F1:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3]]; -- 2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3 |
− | F2 := [[1 | + | F2:= [[2x[1],y[1],x[2]^2], [y[2],x[2]^3]]; -- 2x[1]y[1]x[2]^2+y[2]x[2]^3 |
− | + | F3:= [[2x[1],y[1],x[2]]]; -- 2x[1]y[1]x[2] | |
− | NC.IsHomog( | + | NC.IsHomog(F1); |
+ | NC.IsHomog(F2); | ||
+ | NC.IsHomog(F3); | ||
+ | NC.IsHomog([F1,F2,F3]); | ||
+ | NC.IsHomog([F2,F3]); | ||
+ | |||
False | False | ||
------------------------------- | ------------------------------- | ||
− | |||
True | True | ||
------------------------------- | ------------------------------- | ||
− | + | True | |
+ | ------------------------------- | ||
False | False | ||
+ | ------------------------------- | ||
+ | True | ||
------------------------------- | ------------------------------- | ||
</example> | </example> |
Revision as of 17:10, 3 May 2013
NC.IsHomog
Check whether a polynomial or a LIST of polynomials is homogeneous in a non-commutative polynomial ring.
Syntax
NC.IsHomog(F:LIST):BOOL
Description
Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.
@param F: a non-commutative polynomial or a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a BOOL, which is True if F is homogeneous and False otherwise.
Example
USE QQ[x[1..2],y[1..2]]; F1:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3]]; -- 2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3 F2:= [[2x[1],y[1],x[2]^2], [y[2],x[2]^3]]; -- 2x[1]y[1]x[2]^2+y[2]x[2]^3 F3:= [[2x[1],y[1],x[2]]]; -- 2x[1]y[1]x[2] NC.IsHomog(F1); NC.IsHomog(F2); NC.IsHomog(F3); NC.IsHomog([F1,F2,F3]); NC.IsHomog([F2,F3]); False ------------------------------- True ------------------------------- True ------------------------------- False ------------------------------- True -------------------------------
See also