Difference between revisions of "ApCoCoA-1:NCo.SetX"

From ApCoCoAWiki
(New page: <command> <title>NCo.SetX</title> <short_description> Set alphabet (set of indeterminates). </short_description> <syntax> NCo.SetX(X:STRING) </syntax> <description> <itemize> <item>@param ...)
 
Line 2: Line 2:
 
<title>NCo.SetX</title>
 
<title>NCo.SetX</title>
 
<short_description>
 
<short_description>
Set alphabet (set of indeterminates).
+
Set alphabet (set of indeterminates) for a free monoid ring.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
Line 9: Line 9:
 
<description>
 
<description>
 
<itemize>
 
<itemize>
<item>@param <em>X</em>: a STRING which is the alphabet (set of indeterminates) of a free monoid ring. Every letter in <tt>X</tt> must have a unique occurreNCoe. The order of letters in <tt>X</tt> is important siNCoe it will induce an admissible ordering. For example, <ref>NCo.SetX</ref>(<quotes>xyz</quotes>); <ref>NCo.SetOrdering</ref>(<quotes>ELIM</quotes>); means the elimination ordering induced from <tt>x&gt;y&gt;z</tt>. In other words, <quotes>ELIM</quotes> first eliminates <tt>x</tt> and then <tt>y</tt> and finally <tt>z</tt>.</item>
+
<item>@param <em>X</em>: a STRING which is the alphabet (set of indeterminates) of a free monoid ring. Every letter in <tt>X</tt> must have a unique occurrence. The order of letters in X is important since it will induce word orderings. For example,  
 +
NCo.SetX("xyz");  
 +
NCo.SetOrdering("LLEX");  
 +
defines the length-lexicographic ordering induced by x&gt;y&gt;z.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>
Line 25: Line 28:
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NCo.Add</see>
 
<see>NCo.Deg</see>
 
<see>NCo.FindPolynomials</see>
 
<see>NCo.GAdd</see>
 
<see>NCo.GB</see>
 
<see>NCo.GDeg</see>
 
<see>NCo.GGB</see>
 
<see>NCo.GHF</see>
 
<see>NCo.GInterreduction</see>
 
<see>NCo.GIsGB</see>
 
<see>NCo.GLC</see>
 
<see>NCo.GLT</see>
 
<see>NCo.GMB</see>
 
<see>NCo.GMultiply</see>
 
<see>NCo.GNR</see>
 
<see>NCo.GReducedGB</see>
 
<see>NCo.GSubtract</see>
 
<see>NCo.GTruNCoatedGB</see>
 
<see>NCo.HF</see>
 
<see>NCo.Interreduction</see>
 
<see>NCo.Intersection</see>
 
<see>NCo.IsFinite</see>
 
<see>NCo.IsGB</see>
 
<see>NCo.IsHomog</see>
 
<see>NCo.KernelOfHomomorphism</see>
 
<see>NCo.LC</see>
 
<see>NCo.LT</see>
 
<see>NCo.LTIdeal</see>
 
<see>NCo.MB</see>
 
<see>NCo.MinimalPolynomial</see>
 
<see>NCo.Multiply</see>
 
<see>NCo.NR</see>
 
<see>NCo.ReducedGB</see>
 
<see>NCo.SetFp</see>
 
 
<see>NCo.SetOrdering</see>
 
<see>NCo.SetOrdering</see>
<see>NCo.SetRelations</see>
 
<see>NCo.SetRules</see>
 
<see>NCo.SetX</see>
 
<see>NCo.Subtract</see>
 
<see>NCo.TruNCoatedGB</see>
 
<see>NCo.UnsetFp</see>
 
<see>NCo.UnsetOrdering</see>
 
<see>NCo.UnsetRelations</see>
 
<see>NCo.UnsetRules</see>
 
<see>NCo.UnsetX</see>
 
<see>Introduction to CoCoAServer</see>
 
 
</seealso>
 
</seealso>
 
<types>
 
<types>

Revision as of 15:50, 30 April 2013

NCo.SetX

Set alphabet (set of indeterminates) for a free monoid ring.

Syntax

NCo.SetX(X:STRING)

Description

  • @param X: a STRING which is the alphabet (set of indeterminates) of a free monoid ring. Every letter in X must have a unique occurrence. The order of letters in X is important since it will induce word orderings. For example,

    NCo.SetX("xyz"); 
    NCo.SetOrdering("LLEX"); 
    

    defines the length-lexicographic ordering induced by x>y>z.

Example

NCo.RingEnv();
Coefficient ring : Q
Ordering : LLEX
-------------------------------
NCo.SetX(<quotes>xyz</quotes>);
NCo.RingEnv();
Coefficient ring : Q
Alphabet : xyz
Ordering : LLEX
-------------------------------

See also

NCo.SetOrdering