Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzFull"

From ApCoCoAWiki
Line 69: Line 69:
 
   </description>
 
   </description>
 
   <types>
 
   <types>
     <type>borderbasis</type>
+
     <type>bbsmingensys</type>
 
     <type>list</type>
 
     <type>list</type>
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>

Revision as of 20:16, 18 June 2012

BBSGen.TraceSyzFull

This function computes the trace polynomials.


Syntax

TraceSyzFull(OO,BO,N);
TraceSyzFull(OO:LIST,BO:LIST,N:INTEGER):LIST

Description

Let l,k_1,....,k_s in {1,...,n} where s is a positive integer and

    Pi=x_{k_1}...x_{k_s}x_l

a term (or power product) from the polynomial ring K[x_1,...,x_N]. Let the generic multiplication matrices A_{k_1},...,A_{k_s},A_l in Mat(K[c]) be associated to the indeterminates in Pi. We shall name the polynomial

   Trace([A_{k_1}...A_{k_s},A_l]) in K[c] 

as the trace polynomial with respect to Pi and variable x_l. We shall denote it by

 T_{Pi,x_l}.  

This function computes every trace polynomial with respect to every Pi with log that is equal to a non-standard degree of an element from tau and with respect to every variable from {x_1,...,x_N}.

NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend BBSGen.TraceSyzStep and

BBSGen.TraceSyzLin .



  • @param The order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return The list of Trace Syzygy polynomials.


Example

    
Use R::=QQ[x[1..2]];
OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);
Mu:=Len(OO);
Nu:=Len(BO);


Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 


BBSGen.TraceSyzFull(OO,BO,N);

[c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] +
 c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + 
t[1,2,1,3] + t[1,2,2,4],
  2c[1,1]t[1,2,2,1] + 2c[2,1]t[1,2,2,2] + 2c[3,1]t[1,2,2,3] + 2c[4,1]t[1,2,2,4]+ 
2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] + 2c[3,3]t[1,2,4,3] + 2c[4,3]t[1,2,4,4] 
+ 2t[1,2,1,2] + 2t[1,2,3,4],
  c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + 
c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + 
t[1,2,1,3] + t[1,2,2,4],
  2c[1,2]c[3,1]t[1,2,2,1] + 2c[1,4]c[4,1]t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] +
 2c[2,4]c[4,1]t[1,2,2,2] + 2c[3,1]c[3,2]t[1,2,2,3] + 2c[3,4]c[4,1]t[1,2,2,3] +
 2c[3,1]c[4,2]t[1,2,2,4] + 2c[4,1]c[4,4]t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] +
 2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] +
 2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]c[4,3]t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] + 
2c[4,3]c[4,4]t[1,2,4,4] + 2c[1,1]t[1,2,2,3] + 2c[2,1]t[1,2,2,4] + 2c[1,4]t[1,2,3,1] + 
2c[2,4]t[1,2,3,2] + 2c[3,4]t[1,2,3,3] + 2c[4,4]t[1,2,3,4] + 2c[1,3]t[1,2,4,3] +
 2c[2,3]t[1,2,4,4] + 2t[1,2,1,4]]


BBSGen.Wmat

BBSGen.TraceSyzStep

BBSGen.TraceSyzLin