Difference between revisions of "ApCoCoA-1:NC.Interreduction"

From ApCoCoAWiki
Line 2: Line 2:
 
<title>NC.Interreduction</title>
 
<title>NC.Interreduction</title>
 
<short_description>
 
<short_description>
Interreduce a list (set) of polynomials in a free monoid ring. Note that, given an admissible ordering <tt>Ordering</tt>, a set of non-zero polynomial <tt>G</tt> is called <em>interreduced</em> w.r.t. <tt>Ordering</tt> if no element of <tt>Supp(g)</tt> is contained in <tt>LT(G\{g})</tt> for all <tt>g</tt> in <tt>G</tt>.
+
Interreduce a list (set) of polynomials in a free monoid ring.  
 +
<par/>
 +
Note that, given an admissible ordering <tt>Ordering</tt>, a set of non-zero polynomial <tt>G</tt> is called <em>interreduced</em> w.r.t. <tt>Ordering</tt> if no element of <tt>Supp(g)</tt> is contained in <tt>LT(G\{g})</tt> for all <tt>g</tt> in <tt>G</tt>.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>

Revision as of 15:32, 11 June 2012

NC.Interreduction

Interreduce a list (set) of polynomials in a free monoid ring.

Note that, given an admissible ordering Ordering, a set of non-zero polynomial G is called interreduced w.r.t. Ordering if no element of Supp(g) is contained in LT(G\{g}) for all g in G.

Syntax

NC.Interreduction(G:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param G: a LIST of polynomials in K<X>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a LIST of interreduced polynomials.

Example

NC.SetX(<quotes>abc</quotes>);
NC.SetOrdering(<quotes>ELIM</quotes>);
G:=[[[1,<quotes>ba</quotes>]], [[1,<quotes>b</quotes>],[1,<quotes></quotes>]], [[1,<quotes>c</quotes>]]];
NC.Interreduction(G);

[[[1, <quotes>a</quotes>]], [[1, <quotes>b</quotes>], [1, <quotes></quotes>]], [[1, <quotes>c</quotes>]]]
-------------------------------

See also

NC.Add

NC.Deg

NC.FindPolynomials

NC.GB

NC.HF

NC.Interreduction

NC.Intersection

NC.IsFinite

NC.IsGB

NC.IsHomog

NC.KernelOfHomomorphism

NC.LC

NC.LT

NC.LTIdeal

NC.MB

NC.MinimalPolynomial

NC.Multiply

NC.NR

NC.ReducedGB

NC.SetFp

NC.SetOrdering

NC.SetRelations

NC.SetRules

NC.SetX

NC.Subtract

NC.TruncatedGB

NC.UnsetFp

NC.UnsetOrdering

NC.UnsetRelations

NC.UnsetRules

NC.UnsetX

Introduction to CoCoAServer