Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzFull"
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzFull</title> | <title>BBSGen.TraceSyzFull</title> | ||
− | <short_description>: This function computes the trace | + | <short_description>: This function computes the trace polynomials. |
Line 11: | Line 11: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let | + | Let l,k_{1},....,k_{s}\in {1,...,n} where s\in N^{+} and |
+ | \Pi=x_{k_{1}}...x_{k_{s}}x_{l}. | ||
+ | Let the generic multiplication matrices A_{k_{1}},...,A_{k_{s}},A_{l}\in Mat(K[c]) be associated to the indeterminates in \Pi. We shall name the polynomial | ||
+ | Trace([A_{k_{1}}...A_{k_{s}},A_{l}])\in K[c] | ||
+ | as the trace polynomial with respect to \Pi and variable x_{l}. We shall denote it by T_{\Pi,x_{l}}}. | ||
+ | This function computes every trace polynomial with respect to every \Pi that is equal to a non-standard degree of an element from \tau and every variable from {x_1,...,x_N}. | ||
+ | |||
+ | NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend <see>BBSGen.TraceSyzStep</see> and | ||
+ | <see>BBSGen.TraceSyzLin</see> . | ||
+ | |||
+ | |||
<itemize> | <itemize> | ||
− | <item>@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial. | + | <item>@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis) |
</item> | </item> | ||
<item>@return The list of Trace Syzygy polynomials. </item> | <item>@return The list of Trace Syzygy polynomials. </item> | ||
Line 61: | Line 71: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | + | ||
− | |||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
<see>BBSGen.TraceSyzStep</see> | <see>BBSGen.TraceSyzStep</see> |
Revision as of 18:16, 8 June 2012
BBSGen.TraceSyzFull
- This function computes the trace polynomials.
Syntax
TraceSyzFull(OO,BO,N); TraceSyzFull(OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Let l,k_{1},....,k_{s}\in {1,...,n} where s\in N^{+} and
\Pi=x_{k_{1}}...x_{k_{s}}x_{l}.
Let the generic multiplication matrices A_{k_{1}},...,A_{k_{s}},A_{l}\in Mat(K[c]) be associated to the indeterminates in \Pi. We shall name the polynomial
Trace([A_{k_{1}}...A_{k_{s}},A_{l}])\in K[c]
as the trace polynomial with respect to \Pi and variable x_{l}. We shall denote it by T_{\Pi,x_{l}}}. This function computes every trace polynomial with respect to every \Pi that is equal to a non-standard degree of an element from \tau and every variable from {x_1,...,x_N}.
NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend
and
.
@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis)
@return The list of Trace Syzygy polynomials.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzFull(OO,BO,N); [c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4], 2c[1,1]t[1,2,2,1] + 2c[2,1]t[1,2,2,2] + 2c[3,1]t[1,2,2,3] + 2c[4,1]t[1,2,2,4]+ 2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] + 2c[3,3]t[1,2,4,3] + 2c[4,3]t[1,2,4,4] + 2t[1,2,1,2] + 2t[1,2,3,4], c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4], 2c[1,2]c[3,1]t[1,2,2,1] + 2c[1,4]c[4,1]t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] + 2c[2,4]c[4,1]t[1,2,2,2] + 2c[3,1]c[3,2]t[1,2,2,3] + 2c[3,4]c[4,1]t[1,2,2,3] + 2c[3,1]c[4,2]t[1,2,2,4] + 2c[4,1]c[4,4]t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] + 2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] + 2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]c[4,3]t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] + 2c[4,3]c[4,4]t[1,2,4,4] + 2c[1,1]t[1,2,2,3] + 2c[2,1]t[1,2,2,4] + 2c[1,4]t[1,2,3,1] + 2c[2,4]t[1,2,3,2] + 2c[3,4]t[1,2,3,3] + 2c[4,4]t[1,2,3,4] + 2c[1,3]t[1,2,4,3] + 2c[2,3]t[1,2,4,4] + 2t[1,2,1,4]]