Difference between revisions of "ApCoCoA-1:CharP.LASolve"

From ApCoCoAWiki
(New page: <command> <title>CharP.LASolve</title> <short_description>Computes the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description> <syntax...)
 
Line 1: Line 1:
 
<command>
 
<command>
     <title>CharP.LASolve</title>
+
     <title>CharP.LAAlgorithm</title>
 
     <short_description>Computes the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description>
 
     <short_description>Computes the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description>
 
<syntax>
 
<syntax>
CharP.LASolve(F:LIST):LIST
+
CharP.LAAlgorithm(F:LIST):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Line 28: Line 28:
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
CharP.LASolve(F);
+
CharP.LAAlgorithm(F);
  
 
[0, 1, 0, 1]
 
[0, 1, 0, 1]
Line 47: Line 47:
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
CharP.NLASolve(F,Sparse);
+
CharP.LAAlgorithm(F);
  
 
x[4] = NA
 
x[4] = NA

Revision as of 14:07, 4 June 2012

CharP.LAAlgorithm

Computes the unique F_2-rational zero of a given polynomial system over F_2.

Syntax

CharP.LAAlgorithm(F:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.


This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses LA-Algorithm to find the unique zero. The LA-Algorithm generates a sequence of linear systems to solve the given system. The LA-Algorithm can find the unique zero only. If the given polynomial system has more than one zero's in F_2^n then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound. To solve linear system naive Gaußian elimination is used.


  • @param F: List of polynomials of given system.

  • @return The unique solution of the given system in F_2^n.

Example

Use Z/(2)[x[1..4]];
F:=[
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, 
    x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1
    ];

-- Then we compute the solution with
CharP.LAAlgorithm(F);

[0, 1, 0, 1]


Example

Use Z/(2)[x[1..4]];
F:=[ 
    x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], 
    x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4],  
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2],  
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2]
   ];

-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions 

-- Then we compute the solution with
CharP.LAAlgorithm(F);

x[4] = NA
	Please Check the uniqueness of solution.
	The Given system of polynomials does not
	seem to have a unique solution or it has
	no solution over the finite field F2.



See also

CharP.MXLSolve

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

CharP.GBasisF2

CharP.XLSolve

CharP.IMXLSolve

CharP.IMNLASolve

CharP.MNLASolve