Difference between revisions of "ApCoCoA-1:GLPK.L01PSolve"
Line 111: | Line 111: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
<type>linear_programs</type> | <type>linear_programs</type> | ||
+ | <type>poly_system</type> | ||
</types> | </types> | ||
<key>l01psolve</key> | <key>l01psolve</key> |
Revision as of 14:29, 14 December 2010
GLPK.L01PSolve
Solve a system of polynomial equations over F_2 for one solution in F_2^n.
Syntax
GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function finds one solution in F_2^n of a system of polynomial equations over the field F_2. It operates in two stages. Firstly, it models the problem of finding one solution of given polynomial system into a mixed integer linear programming problem. For this the system is first converted into an equivalent CNF form and then the CNF form is converted into a system of equalities and inequalities. Secondly, the mixed integer linear programming model is solved using glpk.
@param F: A List containing the polynomials of the given system.
@param CuttingNumber: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Double Linear Partner; 3 - Quadratic Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;
@param MinMax: Optimization direction i.e. minimization ("Min") or maximization ("Max").
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; CuttingNumber:=6; QStrategy:=0; CStrategy:=0; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 6, QStrategy: Standard, CStrategy: Standard. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 2 [0, 1, 0, 1] -------------------------------
Example
Use S::=Z/(2)[x[1..5]]; F:=[ x[1]x[5] + x[3]x[5] + x[4]x[5] + x[1] + x[4], x[1]x[2] + x[1]x[4] + x[3]x[4] + x[1]x[5] + x[2]x[5] + x[3]x[5] + x[1] + x[4] + x[5] + 1, x[1]x[2] + x[4]x[5] + x[1] + x[2] + x[4], x[1]x[4] + x[3]x[4] + x[2]x[5] + x[1] + x[2] + x[4] + x[5] + 1, x[1]x[4] + x[2]x[4] + x[3]x[4] + x[2]x[5] + x[4]x[5] + x[1] + x[2] + x[4] + x[5] ]; CuttingNumber:=6; QStrategy:=1; CStrategy:=0; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 6, QStrategy: LinearPartner, CStrategy: Standard. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 4 [1, 1, 1, 1, 0] -------------------------------
Example
Use ZZ/(2)[x[1..3]]; F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1, x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2] ]; CuttingNumber:=5; QStrategy:=0; CStrategy:=1; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 5, QStrategy: Standard, CStrategy: CubicParnterDegree2. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 1 [0, 0, 1] -------------------------------