Difference between revisions of "ApCoCoA-1:CharP.XLSolve"
Line 60: | Line 60: | ||
Use Z/(2)[x[1..4]]; | Use Z/(2)[x[1..4]]; | ||
F:=[ | F:=[ | ||
− | + | x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], | |
− | + | x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], | |
− | + | x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], | |
− | + | x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] | |
− | + | ]; | |
-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions | -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions |
Revision as of 16:33, 6 December 2010
CharP.GBasisF2
Computing the unique F_2-rational zero of a given polynomial system over F_2.
Syntax
CharP.XLSolve(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses XL-Algorithm to find the unique zero. The XL-Algorithm is impelemented only to find a unique solution. If the given polynomial system has more than one zeros in F_2^n then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound.
@param F: A system of polynomial over F_2 having a unique zero in F_2^n.
@return The unique solution of the given system in F_2^n.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute the solution with CharP.XLSolve(F); -- And we achieve the following information on the screen together with the solution at the end. ---------------------------------------- The size of Matrix is: No. of Rows=4 No. of Columns=11 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The size of Matrix is: No. of Rows=16 No. of Columns=15 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [0, 1, 0, 1] [0, 1, 0, 1]
Example
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Then we compute the solution with CharP.XLSolve(F); -- And we achieve the following information on the screen. ---------------------------------------- The size of Matrix is: No. of Rows=4 No. of Columns=9 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The size of Matrix is: No. of Rows=14 No. of Columns=14 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The size of Matrix is: No. of Rows=18 No. of Columns=15 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The size of Matrix is: No. of Rows=13 No. of Columns=15 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] Please Check the uniqueness of solution. The Given system of polynomials does not seem to have a unique solution.
See also
Introduction to Groebner Basis in CoCoA