Difference between revisions of "ApCoCoA-1:CharP.XLSolve"

From ApCoCoAWiki
Line 53: Line 53:
  
 
</example>
 
</example>
 +
 +
 +
<itemize>
 +
<item>@param <em>F</em> A system of polynomial over <tt>F_2</tt> having a unique zero in <tt>F_2^n</tt>. </item>
 +
<item>@return The unique solution of the given system in <tt>F_2^n</tt>. </item>
 +
</itemize>
 +
 +
<example>
 +
Use Z/(2)[x[1..4]];
 +
F:=[
 +
x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4],
 +
x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], 
 +
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], 
 +
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2]
 +
];
 +
 +
-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions
 +
 +
-- Then we compute the solution with
 +
CharP.XLSolve(F);
 +
 +
-- And we achieve the following information on the screen.
 +
----------------------------------------
 +
 +
The size of Matrix is:
 +
No. of Rows=4
 +
No. of Columns=9
 +
Appling Gaussian Elimination...
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
Gaussian Elimination Completed.
 +
The variables found till now, if any are:
 +
[x[1], x[2], x[3], x[4]]
 +
The size of Matrix is:
 +
No. of Rows=14
 +
No. of Columns=14
 +
Appling Gaussian Elimination...
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
Gaussian Elimination Completed.
 +
The variables found till now, if any are:
 +
[x[1], x[2], x[3], x[4]]
 +
The size of Matrix is:
 +
No. of Rows=18
 +
No. of Columns=15
 +
Appling Gaussian Elimination...
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
Gaussian Elimination Completed.
 +
The variables found till now, if any are:
 +
[x[1], x[2], x[3], x[4]]
 +
The size of Matrix is:
 +
No. of Rows=13
 +
No. of Columns=15
 +
Appling Gaussian Elimination...
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
Gaussian Elimination Completed.
 +
The variables found till now, if any are:
 +
[x[1], x[2], x[3], x[4]]
 +
Please Check the uniqueness of solution.
 +
The Given system of polynomials does not
 +
seem to have a unique solution.
 +
 +
</example>
 +
  
 
     </description>
 
     </description>
 
     <seealso>
 
     <seealso>
       <see>GBasis</see>
+
       <see>MXLSolve</see>
 
     <see>Introduction to CoCoAServer</see>
 
     <see>Introduction to CoCoAServer</see>
 
     <see>Introduction to Groebner Basis in CoCoA</see>
 
     <see>Introduction to Groebner Basis in CoCoA</see>

Revision as of 16:21, 6 December 2010

CharP.GBasisF2

Computing the unique F_2-rational zero of a given polynomial system over F_2.

Syntax

CharP.XLSolve(F:LIST):LIST

Description


This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses XL-Algorithm to find the unique zero. The XL-Algorithm is impelemented only to find a unique solution. If the given polynomial system has more than one zeros in F_2^n then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound.

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.


  • @param F A system of polynomial over F_2 having a unique zero in F_2^n.

  • @return The unique solution of the given system in F_2^n.

Example

Use Z/(2)[x[1..4]];
F:=[
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, 
    x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1
    ];

-- Then we compute the solution with
CharP.XLSolve(F);

-- And we achieve the following information on the screen together with the solution at the end.
----------------------------------------

  The size of Matrix is:
		No. of Rows=4
		No. of Columns=11
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[x[1], x[2], x[3], x[4]]
	The size of Matrix is:
		No. of Rows=16
		No. of Columns=15
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[0, 1, 0, 1]
[0, 1, 0, 1]


  • @param F A system of polynomial over F_2 having a unique zero in F_2^n.

  • @return The unique solution of the given system in F_2^n.

Example

Use Z/(2)[x[1..4]];
F:=[ 
	x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], 
	x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4],  
	x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2],  
	x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2]
	];

-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions 

-- Then we compute the solution with
CharP.XLSolve(F);

-- And we achieve the following information on the screen.
----------------------------------------

	The size of Matrix is:
		No. of Rows=4
		No. of Columns=9
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[x[1], x[2], x[3], x[4]]
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=14
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[x[1], x[2], x[3], x[4]]
	The size of Matrix is:
		No. of Rows=18
		No. of Columns=15
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[x[1], x[2], x[3], x[4]]
	The size of Matrix is:
		No. of Rows=13
		No. of Columns=15
Appling Gaussian Elimination...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The variables found till now, if any are:
	[x[1], x[2], x[3], x[4]]
	Please Check the uniqueness of solution.
	The Given system of polynomials does not
	seem to have a unique solution.


See also

MXLSolve

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

CharP.GBasisF4

CharP.GBasisF8

CharP.GBasisF16

CharP.GBasisF32