Difference between revisions of "ApCoCoA-1:CharP.XLSolve"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
     <title>CharP.GBasisF2</title>
 
     <title>CharP.GBasisF2</title>
     <short_description>Computing the unique <tt>F_2-</tt>rational solution of a given polynomial system over <tt>F_2</tt>.</short_description>
+
     <short_description>Computing the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description>
 
<syntax>
 
<syntax>
 
CharP.XLSolve(F:LIST):LIST
 
CharP.XLSolve(F:LIST):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
 +
 +
This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses XL-Algorithm to find the unique zero. If the given polynomial system has more than one zeros in <tt>F_2^n </tt> then this function does not find any zero. Because XL-Algorithm is impelemented only to find a unique solution. 
 +
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<par/>
 
<par/>
This command computes the unique <tt>F_2-</tt>rational solution of a polynomial system over <tt>F_2 = Z/(2)</tt>.   
+
This command computes the unique <tt>F_2-</tt>rational zero of a polynomial system over <tt>F_2 </tt>.   
  
 
<itemize>
 
<itemize>
<item>@param <em>F</em> A system of polynomial equations over <tt>F_2</tt> having a unique solution. </item>
+
<item>@param <em>F</em> A system of polynomial over <tt>F_2</tt> having a unique zero in <tt>F_2^n</tt>. </item>
<item>@return The unique solution of the given system in <tt>F_2</tt>. </item>
+
<item>@return The unique solution of the given system in <tt>F_2^n</tt>. </item>
 
</itemize>
 
</itemize>
  
Line 45: Line 48:
 
     <see>CharP.GBasisF16</see>
 
     <see>CharP.GBasisF16</see>
 
     <see>CharP.GBasisF32</see>
 
     <see>CharP.GBasisF32</see>
     <see>CharP.GBasisF64</see>
+
      
    <see>CharP.GBasisF128</see>
 
    <see>CharP.GBasisF256</see>
 
    <see>CharP.GBasisF512</see>
 
    <see>CharP.GBasisF1024</see>
 
    <see>CharP.GBasisF2048</see>
 
    <see>CharP.GBasisModSquares</see>
 
    <see>Representation of finite fields</see>
 
 
   </seealso>
 
   </seealso>
  

Revision as of 15:54, 6 December 2010

CharP.GBasisF2

Computing the unique F_2-rational zero of a given polynomial system over F_2.

Syntax

CharP.XLSolve(F:LIST):LIST

Description


This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses XL-Algorithm to find the unique zero. If the given polynomial system has more than one zeros in F_2^n then this function does not find any zero. Because XL-Algorithm is impelemented only to find a unique solution.

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command computes the unique F_2-rational zero of a polynomial system over F_2 .

  • @param F A system of polynomial over F_2 having a unique zero in F_2^n.

  • @return The unique solution of the given system in F_2^n.

Example

Use R::=QQ[x,y,z];
I:=Ideal(x-y^2,x^2+xy,y^3);
GBasis(I);
[x^2 + xy, -y^2 + x, -xy]
-------------------------------
Use Z::=ZZ[x,y,z];
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

-------------------------------
I:=Ideal(x-y^2,x^2+xy,y^3);
CharP.GBasisF2(I);
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[y^2 + x, x^2, xy]
-------------------------------


See also

GBasis

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

CharP.GBasisF4

CharP.GBasisF8

CharP.GBasisF16

CharP.GBasisF32