Difference between revisions of "ApCoCoA-1:CharP.GBasisF2048"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
     <title>Char2.GBasisF2048</title>
+
     <title>CharP.GBasisF2048</title>
 
     <short_description>Computing a Groebner Basis of a given ideal in <tt>F_2048</tt>.</short_description>
 
     <short_description>Computing a Groebner Basis of a given ideal in <tt>F_2048</tt>.</short_description>
 
<syntax>
 
<syntax>
Char2.GBasisF2048(Ideal:IDEAL):LIST
+
CharP.GBasisF2048(Ideal:IDEAL):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Line 28: Line 28:
 
-------------------------------
 
-------------------------------
 
I:=Ideal(x-y^2,x^2+xy,y^3);
 
I:=Ideal(x-y^2,x^2+xy,y^3);
Char2.GBasisF2048(I);
+
CharP.GBasisF2048(I);
 
-- WARNING: Coeffs are not in a field
 
-- WARNING: Coeffs are not in a field
 
-- GBasis-related computations could fail to terminate or be wrong
 
-- GBasis-related computations could fail to terminate or be wrong
Line 43: Line 43:
 
     <see>Introduction to CoCoAServer</see>
 
     <see>Introduction to CoCoAServer</see>
 
     <see>Introduction to Groebner Basis in CoCoA</see>
 
     <see>Introduction to Groebner Basis in CoCoA</see>
     <see>Char2.GBasisF2</see>  
+
     <see>CharP.GBasisF2</see>  
     <see>Char2.GBasisF4</see>
+
     <see>CharP.GBasisF4</see>
     <see>Char2.GBasisF8</see>
+
     <see>CharP.GBasisF8</see>
     <see>Char2.GBasisF16</see>
+
     <see>CharP.GBasisF16</see>
     <see>Char2.GBasisF32</see>
+
     <see>CharP.GBasisF32</see>
     <see>Char2.GBasisF64</see>
+
     <see>CharP.GBasisF64</see>
     <see>Char2.GBasisF128</see>
+
     <see>CharP.GBasisF128</see>
     <see>Char2.GBasisF256</see>
+
     <see>CharP.GBasisF256</see>
     <see>Char2.GBasisF512</see>
+
     <see>CharP.GBasisF512</see>
     <see>Char2.GBasisF1024</see>
+
     <see>CharP.GBasisF1024</see>
     <see>Char2.GBasisModSquares</see>
+
     <see>CharP.GBasisModSquares</see>
 
     <see>Representation of finite fields</see>
 
     <see>Representation of finite fields</see>
 
   </seealso>
 
   </seealso>
Line 63: Line 63:
 
     </types>
 
     </types>
  
     <key>char2.GBasisF2048</key>
+
     <key>charP.GBasisF2048</key>
 
     <key>GBasisF2048</key>
 
     <key>GBasisF2048</key>
 
     <key>finite field</key>
 
     <key>finite field</key>
 
     <wiki-category>Package_charP</wiki-category>
 
     <wiki-category>Package_charP</wiki-category>
 
   </command>
 
   </command>

Revision as of 15:26, 6 December 2010

CharP.GBasisF2048

Computing a Groebner Basis of a given ideal in F_2048.

Syntax

CharP.GBasisF2048(Ideal:IDEAL):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command computes a Groebner basis in the field F_2048 = (Z/(2))[x]/(x^11 +x^3 + x^5 +x + 1).

  • @param Ideal An Ideal in a Ring over Z, where the elements 0,...,2047 represent the elements of the field F_2048. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.

  • @return A Groebner Basis of the given ideal.

Example

Use R::=QQ[x,y,z];
I:=Ideal(x-y^2,x^2+xy,y^3);
GBasis(I);

[x^2 + xy, -y^2 + x, -xy]
-------------------------------
Use Z::=ZZ[x,y,z];
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

-------------------------------
I:=Ideal(x-y^2,x^2+xy,y^3);
CharP.GBasisF2048(I);
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[y^2 + 1205x, x^2, xy]
-------------------------------


See also

GBasis

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

CharP.GBasisF2

CharP.GBasisF4

CharP.GBasisF8

CharP.GBasisF16

CharP.GBasisF32

CharP.GBasisF64

CharP.GBasisF128

CharP.GBasisF256

CharP.GBasisF512

CharP.GBasisF1024

CharP.GBasisModSquares

Representation of finite fields