Difference between revisions of "ApCoCoA-1:IML.Solve"
(Added additional "see" entry.) |
|||
Line 44: | Line 44: | ||
<see>Introduction to CoCoAServer</see> | <see>Introduction to CoCoAServer</see> | ||
+ | <see>LinAlg.Solve</see> | ||
<see>LinBox.Solve</see> | <see>LinBox.Solve</see> | ||
<see>LinKer</see> | <see>LinKer</see> |
Revision as of 18:10, 19 November 2010
IML.Solve
Solves a system of linear equations.
Syntax
IML.Solve(M:MAT, B:MAT):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let M and B be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system M*X = B by using the ApCoCoAServer supported by the IML library.
The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found.
@param M A matrix with components either of type INT, ZMOD or RAT.
@param B A matrix with components either of type INT, ZMOD or RAT.
@return A matrix X representing a solution vector of the linear equation system M*X = B if a solution exists or the empty matrix otherwise.
Example
Use ZZ/(19)[x]; M := BringIn(Mat([[1,3,4], [0,2,1]])); B := BringIn(Mat([[1], [2]])); IML.Solve(M, B); ------------------------------- Mat([ [-2 % 19], [1 % 19], [0 % 19] ]) -------------------------------
Example
Use QQ[x]; M := Mat([ [1,3,4], [0,2,1], [1,3,4] ]); B := Mat([ [1], [2], [0] ]); IML.Solve(M, B); ------------------------------- Mat([ [ ] ]) -------------------------------