Difference between revisions of "ApCoCoA-1:Weyl.WRedGB"
From ApCoCoAWiki
m |
|||
Line 20: | Line 20: | ||
Weyl.WRedGB(L); | Weyl.WRedGB(L); | ||
[1] | [1] | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
+ | <example> | ||
+ | A2::=ZZ/7[x[1..2],y[1..2]; -- define appropriate ring | ||
+ | Use A2; | ||
+ | I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); | ||
+ | GbI:=Weyl.WGB(I,0);Len(GbI); | ||
+ | |||
+ | ------------------------------- | ||
+ | -- CoCoAServer: computing Cpu Time = 0.485 | ||
+ | ------------------------------- | ||
+ | 42 -- size of complete GB of the ideal I | ||
+ | ------------------------------- | ||
+ | Time GbI:=Weyl.WRedGB(GbI); | ||
+ | |||
+ | Cpu time = 10.89, User time = 11 | ||
+ | ------------------------------- | ||
+ | 11 -- GbI is now reduced Groebner Basis of the ideal I. | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
+ | ------------------------------- | ||
+ | </example> | ||
+ | |||
</description> | </description> | ||
<seealso> | <seealso> |
Revision as of 11:52, 25 May 2010
Weyl.WRedGB
Computes reduced Groebner basis of a D-ideal in Weyl algebra A_n.
Syntax
Weyl.WRedGB(GB:LIST):LIST
Description
This function converts Groebner basis GB computed by ApCoCoAServer into the reduced Groebner Basis. If GB is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomials using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB).
Note: This function is faster than Weyl.WRGB for a list GB of large size.
@param GB Groebner Basis of an ideal in the Weyl algebra.
@result The reduced Groebner Basis of the given ideal.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; L:=[x,d,1]; Weyl.WRedGB(L); [1] ------------------------------- -- Done. -------------------------------
Example
A2::=ZZ/7[x[1..2],y[1..2]; -- define appropriate ring Use A2; I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); GbI:=Weyl.WGB(I,0);Len(GbI); ------------------------------- -- CoCoAServer: computing Cpu Time = 0.485 ------------------------------- 42 -- size of complete GB of the ideal I ------------------------------- Time GbI:=Weyl.WRedGB(GbI); Cpu time = 10.89, User time = 11 ------------------------------- 11 -- GbI is now reduced Groebner Basis of the ideal I. ------------------------------- -- Done. -------------------------------
See also
Introduction to Groebner Basis in CoCoA