Difference between revisions of "ApCoCoA-1:Gbmr.PRGB"

From ApCoCoAWiki
Line 39: Line 39:
 
<type>apcocoaserver</type>
 
<type>apcocoaserver</type>
 
<type>groebner</type>
 
<type>groebner</type>
 +
</types>
 
<key>gbmr.PRGB</key>
 
<key>gbmr.PRGB</key>
 
<key>PRGB</key>
 
<key>PRGB</key>
 
<wiki-category>Package_gbmr</wiki-category>
 
<wiki-category>Package_gbmr</wiki-category>
 
</command>
 
</command>

Revision as of 09:45, 9 July 2009

Gbmr.PRGB

Compute reduced Groebner basis of right ideal.

Syntax

Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Alphabet: Alphabet of the rewriting system.

  • @param Rules: Rewriting rules of the rewriting system.

  • @param Order: Ordering of monoids.

  • @param F: List of generators.

  • @return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.

Example

Alphabet := "abc";
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
Order := "LLEX";
F1 := [[1,"a"], [1,"b"], [1,"c"]];
F := [F1]; 
Gbmr.PRGB(Alphabet, Rules, Order, F);
-------------------------------
[1+-1b,
1+1c+1a,
1c+1b+1c,
1c+1b+1cc,
1+1a+1ca,
1b+1cc+1bc,
1+1ca+1ba]

See also

Introduction to CoCoAServer