Difference between revisions of "ApCoCoA-1:Gbmr.PRGB"
From ApCoCoAWiki
Line 39: | Line 39: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
<type>groebner</type> | <type>groebner</type> | ||
+ | </types> | ||
<key>gbmr.PRGB</key> | <key>gbmr.PRGB</key> | ||
<key>PRGB</key> | <key>PRGB</key> | ||
<wiki-category>Package_gbmr</wiki-category> | <wiki-category>Package_gbmr</wiki-category> | ||
</command> | </command> |
Revision as of 09:45, 9 July 2009
Gbmr.PRGB
Compute reduced Groebner basis of right ideal.
Syntax
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Alphabet: Alphabet of the rewriting system.
@param Rules: Rewriting rules of the rewriting system.
@param Order: Ordering of monoids.
@param F: List of generators.
@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.
Example
Alphabet := "abc"; Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]]; Order := "LLEX"; F1 := [[1,"a"], [1,"b"], [1,"c"]]; F := [F1]; Gbmr.PRGB(Alphabet, Rules, Order, F); ------------------------------- [1+-1b, 1+1c+1a, 1c+1b+1c, 1c+1b+1cc, 1+1a+1ca, 1b+1cc+1bc, 1+1ca+1ba]
See also