Difference between revisions of "ApCoCoA-1:Slinalg.SEF"

From ApCoCoAWiki
Line 12: Line 12:
  
 
<item>@param <em>NCol</em>: Number of Columns of the matrix.</item>
 
<item>@param <em>NCol</em>: Number of Columns of the matrix.</item>
<item>@param <em>Mat</em>: List of lists containg positions of non zero elements.</item>
+
<item>@param <em>Mat</em>: List of lists containing positions of non zero elements.</item>
<item>@return A list of lists containing the Echelon form of matrix.</item>
+
<item>@return A list of lists containing the Echelon form of the matrix.</item>
 
</itemize>
 
</itemize>
 
   
 
   
 
<example>
 
<example>
 +
Use ZZ/(2)[x];
 +
M := [[1, 2, 6, 7], [1, 2, 4, 5,6], [2, 3], [2, 3, 10, 11], [2, 4, 6, 7, 9, 10], [2, 10, 11, 13], [5, 6, 8], [ 6, 8, 9, 10,12],
 +
[6, 10, 12], [ 10, 13]];
 +
NRow:=10;
 +
NCol:=13;
 +
 +
Slinalg.SEF(NRow, NCol, M);
 +
Mat([
 +
  [1, 2, 3],
 +
  [4, 5, 6],
 +
  [7, 8, 9],
 +
  [11, 12, 13]
 +
])
 +
-------------------------------
 +
Mat([
 +
  [1 % 239, 2 % 239, 3 % 239],
 +
  [0 % 239, 1 % 239, 2 % 239],
 +
  [0 % 239, 0 % 239, 0 % 239],
 +
  [0 % 239, 0 % 239, 0 % 239]
 +
])
 +
-------------------------------
  
  

Revision as of 08:15, 9 July 2009

Slinalg.SEF

Calculates the Echelon form of a sparse matrix over F2.

Syntax

Slinalg.SEF(NRow : INT ,NCol : INT, Mat : LIST)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param NRow: Number of rows of the matrix.

  • @param NCol: Number of Columns of the matrix.

  • @param Mat: List of lists containing positions of non zero elements.

  • @return A list of lists containing the Echelon form of the matrix.

Example

Use ZZ/(2)[x];
M := [[1, 2, 6,	7], [1, 2, 4, 5,6], [2,	3], [2,	3, 10, 11], [2,	4, 6, 7, 9, 10], [2, 10, 11, 13], [5, 6, 8], [ 6, 8, 9,	10,12],	
[6, 10,	12], [ 10, 13]];
NRow:=10;
NCol:=13;

Slinalg.SEF(NRow, NCol, M);
Mat([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
  [11, 12, 13]
])
-------------------------------
Mat([
  [1 % 239, 2 % 239, 3 % 239],
  [0 % 239, 1 % 239, 2 % 239],
  [0 % 239, 0 % 239, 0 % 239],
  [0 % 239, 0 % 239, 0 % 239]
])
-------------------------------




See also

Introduction to CoCoAServer

Bertini.BSolve

Bertini.BMSolve

Bertini.BUHSolve