Difference between revisions of "ApCoCoA-1:Slinalg.SEF"
From ApCoCoAWiki
Line 12: | Line 12: | ||
<item>@param <em>NCol</em>: Number of Columns of the matrix.</item> | <item>@param <em>NCol</em>: Number of Columns of the matrix.</item> | ||
− | <item>@param <em>Mat</em>: List of lists | + | <item>@param <em>Mat</em>: List of lists containing positions of non zero elements.</item> |
− | <item>@return A list of lists containing the Echelon form of matrix.</item> | + | <item>@return A list of lists containing the Echelon form of the matrix.</item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
+ | Use ZZ/(2)[x]; | ||
+ | M := [[1, 2, 6, 7], [1, 2, 4, 5,6], [2, 3], [2, 3, 10, 11], [2, 4, 6, 7, 9, 10], [2, 10, 11, 13], [5, 6, 8], [ 6, 8, 9, 10,12], | ||
+ | [6, 10, 12], [ 10, 13]]; | ||
+ | NRow:=10; | ||
+ | NCol:=13; | ||
+ | |||
+ | Slinalg.SEF(NRow, NCol, M); | ||
+ | Mat([ | ||
+ | [1, 2, 3], | ||
+ | [4, 5, 6], | ||
+ | [7, 8, 9], | ||
+ | [11, 12, 13] | ||
+ | ]) | ||
+ | ------------------------------- | ||
+ | Mat([ | ||
+ | [1 % 239, 2 % 239, 3 % 239], | ||
+ | [0 % 239, 1 % 239, 2 % 239], | ||
+ | [0 % 239, 0 % 239, 0 % 239], | ||
+ | [0 % 239, 0 % 239, 0 % 239] | ||
+ | ]) | ||
+ | ------------------------------- | ||
Revision as of 08:15, 9 July 2009
Slinalg.SEF
Calculates the Echelon form of a sparse matrix over F2.
Syntax
Slinalg.SEF(NRow : INT ,NCol : INT, Mat : LIST)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param NRow: Number of rows of the matrix.
@param NCol: Number of Columns of the matrix.
@param Mat: List of lists containing positions of non zero elements.
@return A list of lists containing the Echelon form of the matrix.
Example
Use ZZ/(2)[x]; M := [[1, 2, 6, 7], [1, 2, 4, 5,6], [2, 3], [2, 3, 10, 11], [2, 4, 6, 7, 9, 10], [2, 10, 11, 13], [5, 6, 8], [ 6, 8, 9, 10,12], [6, 10, 12], [ 10, 13]]; NRow:=10; NCol:=13; Slinalg.SEF(NRow, NCol, M); Mat([ [1, 2, 3], [4, 5, 6], [7, 8, 9], [11, 12, 13] ]) ------------------------------- Mat([ [1 % 239, 2 % 239, 3 % 239], [0 % 239, 1 % 239, 2 % 239], [0 % 239, 0 % 239, 0 % 239], [0 % 239, 0 % 239, 0 % 239] ]) -------------------------------
See also