Difference between revisions of "ApCoCoA-1:Latte.Count"
(Updated example.) |
(Updated example. (Skaspar)) |
||
Line 25: | Line 25: | ||
GreaterEq := [x,y]; | GreaterEq := [x,y]; | ||
Latte.Count(Equations, LesserEq, GreaterEq); | Latte.Count(Equations, LesserEq, GreaterEq); | ||
+ | |||
+ | 3 | ||
+ | ------------------------------- | ||
</example> | </example> | ||
Revision as of 10:41, 29 April 2009
Latte.Count
Counts the lattice points of a polyhedral given by a number of linear constraints.
Syntax
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints
@param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints
@param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints
@param Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P
@return The number of lattice points in the given polyhedral P
Example
-- To count the lattice points in the polyhedral P = {x >= 0, y >= 0, x <= 1, x + y <= 1}: Use S ::= QQ[x,y]; Equations := []; LesserEq := [x-1, x+y-1]; GreaterEq := [x,y]; Latte.Count(Equations, LesserEq, GreaterEq); 3 -------------------------------