ApCoCoA-1:BB.HomBBscheme: Difference between revisions
From ApCoCoAWiki
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<title>BB.HomBBscheme</title> | <title>BB.HomBBscheme</title> | ||
<short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | <short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | ||
<syntax>BB.HomBBscheme(OO:LIST):IDEAL</syntax> | |||
<syntax> | |||
BB.HomBBscheme(OO:LIST):IDEAL | |||
</syntax> | |||
<description> | <description> | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}]. | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}]. |
Revision as of 14:47, 24 April 2009
BB.HomBBscheme
Computes the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].