Difference between revisions of "ApCoCoA-1:LinBox.CharPoly"
From ApCoCoAWiki
Line 2: | Line 2: | ||
<title>LinBox.CharPoly</title> | <title>LinBox.CharPoly</title> | ||
<short_description>Compute the characteristic polynomial of a matrix.</short_description> | <short_description>Compute the characteristic polynomial of a matrix.</short_description> | ||
− | <syntax>LinBox.CharPoly(M:MAT, X:POLY):LIST</syntax> | + | |
+ | <syntax> | ||
+ | LinBox.CharPoly(M:MAT, X:POLY):LIST | ||
+ | </syntax> | ||
<description> | <description> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. |
Revision as of 15:06, 24 April 2009
LinBox.CharPoly
Compute the characteristic polynomial of a matrix.
Syntax
LinBox.CharPoly(M:MAT, X:POLY):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns the characteristic polynomial of M in the indeterminate X computed by the ApCoCoAServer using LinBox functions.
@param M A matrix with whose components do not contain the indeterminate X.
@param X An indeterminate.
@return The characteristic polynomial of M in the indeterminate X.
Example
Use R ::= ZZ/(19)[x]; LinBox.CharPoly(BringIn(Mat([[1,2,3],[4,5,6],[7,8,9]])), x); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- x^3 + 4x^2 + x -------------------------------
Example
Use R ::= ZZ[x]; LinBox.CharPoly(Mat([[1,2,3],[4,5,6],[7,8,9]]), x); -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong ------------------------------- -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong -- CoCoAServer: computing Cpu Time = 0 ------------------------------- x^3 - 15x^2 - 18x -------------------------------