Difference between revisions of "ApCoCoA-1:Weyl.WSPoly"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>Weyl.WSPoly</title> | <title>Weyl.WSPoly</title> | ||
− | <short_description>Computes S-polynomial.</short_description> | + | <short_description>Computes S-polynomial of Weyl polynomials.</short_description> |
<syntax> | <syntax> | ||
Weyl.WSPoly(F:POLY,G:POLY):POLY | Weyl.WSPoly(F:POLY,G:POLY):POLY | ||
Line 14: | Line 14: | ||
</itemize> | </itemize> | ||
− | <em>Note:</em> All polynomials that are not in normal form should be first converted | + | <em>Note:</em> All polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results. |
<example> | <example> |
Revision as of 14:43, 28 April 2009
Weyl.WSPoly
Computes S-polynomial of Weyl polynomials.
Syntax
Weyl.WSPoly(F:POLY,G:POLY):POLY
Description
Computes the S-polynomial of F and G.
@param F A Weyl polynomial in normal form.
@param G A Weyl polynomial in normal form.
@result The S-polynomial of F and G.
Note: All polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; F1:=-d[1]^3d[2]^5d[3]^5+x[2]^5; F2:=-3x[2]d[2]^5d[3]^5+x[2]d[1]^3; F3:=-2d[1]^4d[2]^5-x[1]d[2]^7+x[3]^3d[3]^5; Weyl.WSPoly(F1,F2); x[2]d[1]^6 - 3x[2]^6 ------------------------------- Weyl.WSPoly(F2,F3); -3x[1]x[2]d[2]^7d[3]^5 + 3x[2]x[3]^3d[3]^10 + 3x[2]x[3]^2d[3]^9 - 2x[2]x[3]d[3]^8 - 2x[2]d[1]^7 - 2x[2]d[3]^7 ------------------------------- Weyl.WSPoly(F1,F3); -x[1]d[2]^7d[3]^5 + x[3]^3d[3]^10 + x[3]^2d[3]^9 - 3x[3]d[3]^8 - 3d[3]^7 - 2x[2]^5d[1] ------------------------------- Weyl.WSPoly(F3,F1); x[1]d[2]^7d[3]^5 - x[3]^3d[3]^10 - x[3]^2d[3]^9 + 3x[3]d[3]^8 + 3d[3]^7 + 2x[2]^5d[1] -------------------------------
See also