Difference between revisions of "ApCoCoA-1:BB.HomNDgens"
(Types section update.) |
|||
Line 12: | Line 12: | ||
</description> | </description> | ||
<types> | <types> | ||
− | |||
− | |||
− | |||
<type>borderbasis</type> | <type>borderbasis</type> | ||
</types> | </types> | ||
Line 20: | Line 17: | ||
<see>BB.HomASgens</see> | <see>BB.HomASgens</see> | ||
<see>BB.NDgens</see> | <see>BB.NDgens</see> | ||
+ | |||
<key>HomNDgens</key> | <key>HomNDgens</key> | ||
<key>BB.HomNDgens</key> | <key>BB.HomNDgens</key> |
Revision as of 13:43, 24 April 2009
BB.HomNDgens
Compute the generators of the vanishing ideal of a homogeneous border basis scheme.
Syntax
BB.HomNDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO). The inputs are an integer K in the range 1..Len(BB.NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param K The generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO) will be computed.
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].