Difference between revisions of "ApCoCoA-1:BB.LiftASViaServer"
(Example section update.) |
(Description update.) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | + | <title>BB.LiftASViaServer</title> | |
− | + | <short_description>Compute the border basis scheme ideal generators obtained from lifting of AS neighbors.</short_description> | |
− | <syntax> | + | <syntax>BB.LiftASViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST</syntax> |
− | BB.LiftASViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST | + | <description> |
− | </syntax> | + | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. |
− | + | <par/> | |
− | + | If <tt>HomogeneousLift</tt> is set to <tt>False</tt>, the generators of the border basis scheme ideal I(B_O) that result from the lifting of across-the-street neighbors will computed by using the ApCoCoAServer. The input is a list of terms <tt>OO</tt> representing an order ideal and a list of terms <tt>Border</tt> representing the border of the order ideal. If <tt>HomogeneousLift</tt> is set to <tt>True</tt>, generators of I(B^hom_O) will be computed instead. The output is a list of polynomials in the ring BBS=K[c_{ij}]. | |
− | |||
− | If <tt>HomogeneousLift</tt> is set to <tt>False</tt>, the generators of the border basis scheme ideal | ||
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
Line 26: | Line 24: | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
− | + | </description> | |
− | <types> | + | <types> |
− | + | <type>list</type> | |
− | + | <type>boolean</type> | |
− | + | <type>apcocoaserver</type> | |
− | </types> | + | </types> |
− | + | <see>BB.LiftAS</see> | |
− | + | <see>BB.LiftHomAS</see> | |
− | + | <see>BB.LiftND</see> | |
− | + | <see>BB.LiftNDViaServer</see> | |
− | + | <see>BB.LiftHomND</see> | |
− | + | <key>LiftASViaServer</key> | |
− | + | <key>BB.LiftASViaServer</key> | |
− | + | <key>borderbasis.LiftASViaServer</key> | |
− | + | <wiki-category>Package_borderbasis</wiki-category> | |
</command> | </command> |
Revision as of 11:06, 24 April 2009
BB.LiftASViaServer
Compute the border basis scheme ideal generators obtained from lifting of AS neighbors.
Syntax
BB.LiftASViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
If HomogeneousLift is set to False, the generators of the border basis scheme ideal I(B_O) that result from the lifting of across-the-street neighbors will computed by using the ApCoCoAServer. The input is a list of terms OO representing an order ideal and a list of terms Border representing the border of the order ideal. If HomogeneousLift is set to True, generators of I(B^hom_O) will be computed instead. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param OO A list of terms representing an order ideal.
@param Border A list of terms representing the border of OO
@param Homogeneous Set to TRUE if you want to compute the generators of the homogeneous border basis scheme.
@return A list of generators of the border basis scheme ideal I(B_O) that results from the lifting of across-the-street neighbors. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y], DegRevLex; BB.LiftASViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False); ------------------------------- [BBS :: c[3,4]c[4,1] - c[2,3]c[4,2] + c[2,4] - c[3,3], BBS :: -c[2,2]c[2,3] + c[2,1]c[3,4] - c[2,4]c[4,3] + c[2,3]c[4,4] - c[1,3], BBS :: -c[2,3]c[3,2] + c[3,1]c[3,4] - c[3,4]c[4,3] + c[3,3]c[4,4] + c[1,4], BBS :: -c[1,2]c[2,3] + c[1,1]c[3,4] - c[1,4]c[4,3] + c[1,3]c[4,4]] -------------------------------