Difference between revisions of "ApCoCoA-1:Weyl.WNR"
From ApCoCoAWiki
Line 45: | Line 45: | ||
</seealso> | </seealso> | ||
<types> | <types> | ||
− | <type> | + | <type>apcocoaserver</type> |
+ | <type>polynomial</type> | ||
</types> | </types> | ||
<key>weyl.wnr</key> | <key>weyl.wnr</key> | ||
<wiki-category>Package_weyl</wiki-category> | <wiki-category>Package_weyl</wiki-category> | ||
</command> | </command> |
Revision as of 16:14, 23 April 2009
Weyl.WNR
Computes normal remainder of a Weyl polynomial F with respect
to a polynomial or a set of polnomials.
Syntax
Weyl.WNR(F:POLY,G:POLY):POLY Weyl.WNR(F:POLY,G:LIST):POLY
Description
Computes the normal remainder of a Weyl polynomial F with respect to a polynomial G or a set of polynomials in the list G.
If G is Groebner basis then this function is used for ideal membership problem.
@param F A Weyl polynomial in normal form.
@param G A Weyl polynomial or a list of Weyl polynomials.
@return The remainder as a weyl polynomial using normal remainder algorithm in Weyl algebra A_n.
Note: All polynomials that are not in normal form should be first converted in to normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; F1:=-d[1]^3d[2]^5d[3]^5+x[2]^5; F2:=-3x[2]d[2]^5d[3]^5+x[2]d[1]^3; F3:=-2d[1]^4d[2]^5-x[1]d[2]^7+x[3]^3d[3]^5; L:=[F1,F2,F3]; Weyl.WNR(F1,L); 0 ------------------------------- Weyl.WNR(F1,Gens(Ideal(F2,F3))); -d[1]^3d[2]^5d[3]^5 + x[2]^5 ------------------------------- Weyl.WNR(x[2]^5-d[1]^3,L); x[2]^5 - d[1]^3 ------------------------------- Weyl.WNR(x[2]^5-d[1]^3d[2]^7d[3]^6,F1); -x[2]^5d[2]^2d[3] - 3x[2]^4d[2]d[3] + x[2]^5 + x[2]^3d[3] -------------------------------
See also