Difference between revisions of "ApCoCoA-1:DA.Sep"

From ApCoCoAWiki
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.
+
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. The seperand of F is just the initial of the derivative of F.
 
 
The seperand of F is just the initial of the derivative of F.
 
  
 
<itemize>
 
<itemize>
Line 36: Line 34:
 
<type>polynomial</type>
 
<type>polynomial</type>
 
</types>
 
</types>
 +
 
<see>DA.DiffTO</see>
 
<see>DA.DiffTO</see>
 
<see>DA.Differentiate</see>
 
<see>DA.Differentiate</see>

Revision as of 11:29, 24 April 2009

DA.Sep

Computes the separand of a differential polynomial.

Syntax

DA.Sep(F:POLY):POLY

Description

DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. The seperand of F is just the initial of the derivative of F.

  • @param F A differential polynomial.

  • @return The seperand of F wrt. to the current differential term ordering.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));

F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=DA.Differentiate(F);
DA.Initial(G);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
DA.Sep(F);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------



DA.DiffTO

DA.Differentiate

DA.Initial