Difference between revisions of "ApCoCoA-1:DA.Sep"
From ApCoCoAWiki
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. | + | DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. The seperand of F is just the initial of the derivative of F. |
− | |||
− | The seperand of F is just the initial of the derivative of F. | ||
<itemize> | <itemize> | ||
Line 36: | Line 34: | ||
<type>polynomial</type> | <type>polynomial</type> | ||
</types> | </types> | ||
+ | |||
<see>DA.DiffTO</see> | <see>DA.DiffTO</see> | ||
<see>DA.Differentiate</see> | <see>DA.Differentiate</see> |
Revision as of 11:29, 24 April 2009
DA.Sep
Computes the separand of a differential polynomial.
Syntax
DA.Sep(F:POLY):POLY
Description
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. The seperand of F is just the initial of the derivative of F.
@param F A differential polynomial.
@return The seperand of F wrt. to the current differential term ordering.
Example
Use Q[x[1..2,0..20]]; Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; G:=DA.Differentiate(F); DA.Initial(G); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] ------------------------------- DA.Sep(F); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] -------------------------------