ApCoCoA-1:BB.GenericBB: Difference between revisions
From ApCoCoAWiki
Types section update. |
Description update. |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BB.GenericBB</title> | |||
<short_description>Compute a generic border basis.</short_description> | |||
<syntax> | <syntax>BB.GenericBB(OO:LIST):LIST</syntax> | ||
BB.GenericBB(OO:LIST):LIST | <description> | ||
</syntax> | Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}]. | ||
Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the | |||
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
<item>@return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF = K[x_1,..,x_n,c_{ij}].</item> | <item>@return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].</item> | ||
</itemize> | </itemize> | ||
</description> | |||
<types> | <types> | ||
<type>list</type> | <type>list</type> | ||
</types> | </types> | ||
<key>GenericBB</key> | |||
<key>BB.GenericBB</key> | |||
<key>borderbasis.GenericBB</key> | |||
<wiki-category>Package_borderbasis</wiki-category> | |||
</command> | </command> |
Revision as of 11:19, 24 April 2009
BB.GenericBB
Compute a generic border basis.
Syntax
BB.GenericBB(OO:LIST):LIST
Description
Computes the "generic" border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].