Difference between revisions of "ApCoCoA-1:DA.PseudoAutoReduce"

From ApCoCoAWiki
m (ApCoCoA:Diffalg.PseudoAutoReduce moved to ApCoCoA:DA.PseudoAutoReduce: To comply with style principles.)
Line 9: Line 9:
 
to zero with respect to the returned list.
 
to zero with respect to the returned list.
 
<itemize>
 
<itemize>
<item>@param G List of differential polynomials.</item>
+
<item>@param <em>G</em> List of differential polynomials.</item>
 
<item>@return An autoreduced list of differential polynomials.</item>
 
<item>@return An autoreduced list of differential polynomials.</item>
 
</itemize>
 
</itemize>
Line 26: Line 26:
 
<see>DA.DiffTO</see>
 
<see>DA.DiffTO</see>
 
<see>DA.PseudoReduce</see>
 
<see>DA.PseudoReduce</see>
 +
 
<key>PseudoAutoReduce</key>
 
<key>PseudoAutoReduce</key>
 
<key>DA.PseudoAutoReduce</key>
 
<key>DA.PseudoAutoReduce</key>

Revision as of 11:09, 23 April 2009

DA.PseudoAutoReduce

Calculate a pseudo reduced list of differential polynomials.

Syntax

DA.PseudoAutoReduce(G:LIST):LIST

Description

DA.PseudoAutoReduce returns a pseudo reduced list, i.e., every element of G reduces

to zero with respect to the returned list.

  • @param G List of differential polynomials.

  • @return An autoreduced list of differential polynomials.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));
DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]);
-------------------------------
[x[1,0]^2 + 3x[1,0], x[2,0] + x[1,1]^4]
-------------------------------

DA.DiffTO

DA.PseudoReduce