Difference between revisions of "ApCoCoA-1:FGLM.FGLM"
m (ApCoCoA:FGLM moved to ApCoCoA:FGLM.FGLM: Newly created package documentation.) |
(Category update) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title>FGLM</title> | + | <title>FGLM.FGLM</title> |
− | <short_description>Perform a FGLM Groebner Basis conversion using ApCoCoAServer</short_description> | + | <short_description>Perform a FGLM Groebner Basis conversion using ApCoCoAServer.</short_description> |
<syntax> | <syntax> | ||
FGLM(GBOld:LIST, M:MAT):LIST | FGLM(GBOld:LIST, M:MAT):LIST | ||
Line 28: | Line 28: | ||
BringIn(GBNew); | BringIn(GBNew); | ||
</example> | </example> | ||
− | + | </description> | |
− | + | <seealso> | |
− | + | <see>GBasis5, and more</see> | |
− | + | </seealso> | |
− | + | <types> | |
− | + | <type>groebner</type> | |
− | + | <type>ideal</type> | |
− | + | <type>list</type> | |
− | + | <type>cocoaserver</type> | |
− | + | </types> | |
− | + | <key>fglm</key> | |
− | + | <key>kaspar</key> | |
− | + | <wiki-category>Package_fglm</wiki-category> | |
+ | </command> |
Revision as of 15:47, 21 April 2009
FGLM.FGLM
Perform a FGLM Groebner Basis conversion using ApCoCoAServer.
Syntax
FGLM(GBOld:LIST, M:MAT):LIST FGLM(GBOld:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
The function FGLM calls the ApCoCoAServer to perform a
FGLM Groebner Basis conversion. Please note that the ideal generated by
the given Groebner Basis must be zero-dimensional. The Groebner Basis contained in list GBOld will be converted into a Groebner Basis with respect to term ordering Ord(M), i.e. M must be a matrix specifying a term ordering. If the parameter M is not specified, CoCoA will assume M = Ord(). Please note that the resulting polynomials belong to a different ring than the ones in GBOld.
Ther return value will be the transformed Groebner basis polynomials.
Example
Use Q[x, y, z], DegRevLex; GBOld := [z^4 -3z^3 - 4yz + 2z^2 - y + 2z - 2, yz^2 + 2yz - 2z^2 + 1, y^2 - 2yz + z^2 - z, x + y - z]; M := LexMat(3); GBNew := FGLM(GBOld, M); Use Q[x, y, z], Ord(M); -- New basis (Lex) BringIn(GBNew);
See also