Difference between revisions of "ApCoCoA-1:Latte.Ehrhart"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
<title>Latte.Ehrhart</title>
 
<title>Latte.Ehrhart</title>
<short_description> Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints</short_description>
+
<short_description>Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints</short_description>
 
<syntax>
 
<syntax>
 
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
 
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
</syntax>
 
 
<syntax>
 
 
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN
 
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN
 
</syntax>
 
</syntax>
  
 
<description>
 
<description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
  
 
<itemize>
 
<itemize>
Line 33: Line 30:
 
   <type>cocoaserver</type>
 
   <type>cocoaserver</type>
 
</types>
 
</types>
<key>LattE</key>
+
<key>Latte</key>
 
<key>Ehrhart</key>
 
<key>Ehrhart</key>
 
<key>Ehrhart-series</key>
 
<key>Ehrhart-series</key>
 
<key>Latte.Ehrhart</key>
 
<key>Latte.Ehrhart</key>
<key>latte.Ehrhart</key>
 
 
<wiki-category>Package_latte</wiki-category>
 
<wiki-category>Package_latte</wiki-category>
 
</command>
 
</command>

Revision as of 11:56, 23 April 2009

Latte.Ehrhart

Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints

Syntax

Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param Degree: Integer n > 0, when using this parameter, the function computes the Taylor series expansion of the Ehrhart series to degree n

  • @return The Ehrhart-series (or the Taylor series expansion to degree n of the Ehrhart series) of the polyhedral P

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Ehrhart(Equations, LesserEq, GreaterEq);