Difference between revisions of "ApCoCoA-1:Bertini.BSolve"
From ApCoCoAWiki
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |
− | <em>M</em>: List of polynomials in the system to be solved. | + | <itemize> |
+ | <item>@param <em>M</em>: List of polynomials in the system to be solved.</item> | ||
+ | <item>@param <em>SysTyp</em>: Type of the system to be solved. Homogeneous (<tt>hom</tt>) or nonhomogeneous (<tt>Nhom</tt>). | ||
+ | </itemize> | ||
− | |||
− | |||
− | |||
<example> | <example> | ||
-- Zero Dimensional Non-Homogeneous Solving | -- Zero Dimensional Non-Homogeneous Solving | ||
Line 89: | Line 89: | ||
<type>cocoaserver</type> | <type>cocoaserver</type> | ||
</types> | </types> | ||
+ | |||
+ | <see>Bertini.BCMSolve</see> | ||
+ | <see>Bertini.BCSolve</see> | ||
+ | <see>Bertini.BMSolve</see> | ||
+ | <see>Bertini.BUHSolve</see> | ||
+ | |||
<key>bsolve</key> | <key>bsolve</key> | ||
+ | <key>bertini.bsolve</key> | ||
<key>solve zero dimensional polynomial system</key> | <key>solve zero dimensional polynomial system</key> | ||
− | |||
<wiki-category>Package_bertini</wiki-category> | <wiki-category>Package_bertini</wiki-category> | ||
</command> | </command> |
Revision as of 10:33, 23 April 2009
BSolve
Solves zero dimensional Homogeneous or Non-Homogeneous polynomial system with Default Configurations.
Syntax
Bertini.BSolve(M:LIST, SysTyp:STRING)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param M: List of polynomials in the system to be solved.
<item>@param SysTyp: Type of the system to be solved. Homogeneous (hom) or nonhomogeneous (Nhom).
Example
-- Zero Dimensional Non-Homogeneous Solving -- We want to solve zero dimensional non-homogeneous system x^2+y^2-5=0, xy-2=0. Use S ::= QQ[x,y]; -- Define appropriate ring M := [x^2+y^2-5, xy-2]; SysTyp := "Nhom"; -- Then we compute the solution with $Bertini.BSolve(M,SysTyp); -- And we achieve: ---------------------------------------- The number of real finite solutions are: 4 The real finite solutions are: 2.000000000000052e+00 -1.207721921243940e-14 9.999999999999164e-01 1.727395183148409e-14 -9.999999999999680e-01 -1.380221440309691e-14 -2.000000000000005e+00 -8.389594590085023e-15 9.999999999999293e-01 2.686603221243866e-14 2.000000000000473e+00 4.530296702485832e-13 -2.000000000000031e+00 -1.809322618557695e-15 -9.999999999999383e-01 -2.558999563654189e-15 For summary of all solutions refer to ApCoCoAServer.
Example
-- Zero Dimensional Homogeneous Solving -- We want to solve zero dimensional homogeneous system x^2-z^2=0, xy-z^2=0. Use S ::= QQ[x,y,z]; -- Define appropriate ring M := [x^2-z^2, xy-z^2]; SysTyp := "hom"; -- Then we compute the solution with $Bertini.BSolve(M,SysTyp); -- And we achieve: ---------------------------------------- The number of real solutions are: 4 The real solutions are: 4.750270171019972e-01 7.277175694441498e-01 4.750270171019972e-01 7.277175694441498e-01 4.750270171019972e-01 7.277175694441498e-01 -1.161874166440340e+00 -1.121939725361908e+00 -1.161874166440340e+00 -1.121939725361908e+00 1.161874166440340e+00 1.121939725361908e+00 -1.213218743783253e-14 9.540042296620362e-14 1.297490331797821e+00 -3.349764345312171e-01 -9.696352192508132e-14 -3.162549982974766e-13 -2.845295858183006e-14 1.079961801218032e-13 1.297490331797885e+00 -3.349764345312022e-01 -9.799048563439788e-14 -3.558617333271439e-13 For summary of all solutions refer to ApCoCoAServer ------------------------------------