Difference between revisions of "ApCoCoA-1:Bertini.BMSolve"

From ApCoCoAWiki
Line 48: Line 48:
 
<key>solve zero dimensional Non-homogeneous polynomial system using mult-homogenization</key>
 
<key>solve zero dimensional Non-homogeneous polynomial system using mult-homogenization</key>
 
<key>solve bm</key>
 
<key>solve bm</key>
<key>eullah</key>
 
 
<wiki-category>Package_bertini</wiki-category>
 
<wiki-category>Package_bertini</wiki-category>
 
</command>
 
</command>

Revision as of 12:12, 20 April 2009

BMSolve

Solves zero dimensional non-Homogeneous polynomial system using mult-homogenization with Default Configurations.

Syntax

Bertini.BMSolve(M:LIST)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

M: List of polynomials in the system to be solved.

Example

-- We want to solve the non-homogenous system x[1]^2+x[2]^2-5=0, x[1]x[2]-2=0, using multi-homogenization. 

Use S ::= QQ[x[1..2]];             --  Define appropriate ring 
M := [x[1]^2+x[2]^2-5, x[1]x[2]-2];

-- Then we compute the solution with
$Bertini.BMSolve(M);

-- And we achieve:
----------------------------------------
The number of real finite solutions are:
4       
The real finite solutions are:
                                         
-2.000000000000035e+00 2.454024452036439e-14
-9.999999999999871e-01 -1.788069996029196e-15

-9.999999999999907e-01 -1.089397896007851e-14
-2.000000000000040e+00 2.607382514440176e-14

1.999999999999310e+00 2.357507317170427e-13
1.000000000000226e+00 -9.624182470906783e-14

1.000000000000282e+00 7.742365792116463e-14
1.999999999999288e+00 -1.777128279159746e-14

For summary of all solutions refer to ApCoCoAServer
------------------------------------------