Difference between revisions of "ApCoCoA-1:Weyl.WMul"

From ApCoCoAWiki
Line 1: Line 1:
 
   <command>
 
   <command>
     <title>Weyl.WeylGB</title>
+
     <title>Weyl.WGB</title>
     <short_description>Computes the Groebner basis of the ideal I using corresponding  
+
     <short_description>Computes the Groebner basis of an ideal I in Weyl algebra <math>A_n</math>, using corresponding  
 
implementation in CoCoALib.</short_description>
 
implementation in CoCoALib.</short_description>
 
<syntax>
 
<syntax>
Weyl.WeylGB(I):LIST
+
Weyl.WGB(I):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
 
{{ApCoCoAServer}}
 
{{ApCoCoAServer}}
  
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.
+
This function computes a Groebner Basis for an Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.
  
 
<example>
 
<example>
Line 18: Line 18:
 
-- CoCoAServer: computing Cpu Time = 0
 
-- CoCoAServer: computing Cpu Time = 0
 
-------------------------------
 
-------------------------------
[d, x, 1]
+
[1]
 +
-------------------------------
 +
Note that Groebner basis you obtained is minimal.
 +
A2::=QQ[x[1..2],y[1..2]];
 +
Use A2;
 +
I1:=Ideal(x[1]^7,y[1]^7);
 +
Weyl.WGB(I1);
 +
-- CoCoAServer: computing Cpu Time = 0.094
 +
-------------------------------
 +
[1]
 +
-------------------------------
 +
</example>
 +
<example>
 +
W3::=ZZ/(7)[x[1..3],d[1..3]];
 +
Use W3;
 +
I2:=Ideal(x[1]^7,d[1]^7);  --is a 2-sided ideal in W3
 +
Weyl.WGB(I2);  --ApCoCOAServer should be running
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
[x[1]^7, d[1]^7]
 
-------------------------------
 
-------------------------------
Note that Groebner basis you obtained is not minimal.
 
  
 +
I3:=Ideal(x[1]^3d[2],x[2]*d[1]^2);
 +
 +
Weyl.WGB(I3);
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
[x[2]^2d[2], x[2]d[2]^2 + 2d[2], x[1]^3d[1]^2 + x[1]^2x[2]d[1]d[2] + x[1]x[2]d[2], x[1]^3d[2], x[2]d[1]^2]
 +
-------------------------------
 
</example>
 
</example>
 
   </description>
 
   </description>
 
     <seealso>
 
     <seealso>
       <see>Weyl.WeylNormalForm</see>
+
       <see>Weyl.WNormalForm</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>
 
       <type>cocoaserver</type>
 
       <type>cocoaserver</type>
 
     </types>
 
     </types>
     <key>weyl.weylgb</key>
+
     <key>weyl.wgb</key>
 
     <wiki-category>Package_Weyl</wiki-category>
 
     <wiki-category>Package_Weyl</wiki-category>
 
   </command>
 
   </command>

Revision as of 09:50, 20 April 2009

Weyl.WGB

Computes the Groebner basis of an ideal I in Weyl algebra , using corresponding

implementation in CoCoALib.

Syntax

Weyl.WGB(I):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

This function computes a Groebner Basis for an Ideal where every generator should be a Weyl polynomial in Normal form.

Example

A1::=QQ[x,d];	--Define appropraite ring
Use A1;
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
Weyl.WeylGB(I);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[1]
-------------------------------
Note that Groebner basis you obtained is minimal.
A2::=QQ[x[1..2],y[1..2]];
Use A2;
I1:=Ideal(x[1]^7,y[1]^7);
Weyl.WGB(I1);
-- CoCoAServer: computing Cpu Time = 0.094
-------------------------------
[1]
-------------------------------

Example

W3::=ZZ/(7)[x[1..3],d[1..3]];
Use W3;
I2:=Ideal(x[1]^7,d[1]^7);  --is a 2-sided ideal in W3
Weyl.WGB(I2);   --ApCoCOAServer should be running
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[x[1]^7, d[1]^7]
-------------------------------

I3:=Ideal(x[1]^3d[2],x[2]*d[1]^2);

Weyl.WGB(I3);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[x[2]^2d[2], x[2]d[2]^2 + 2d[2], x[1]^3d[1]^2 + x[1]^2x[2]d[1]d[2] + x[1]x[2]d[2], x[1]^3d[2], x[2]d[1]^2]
-------------------------------

See also

Weyl.WNormalForm