Difference between revisions of "ApCoCoA-1:DA.NthDerivation"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
     <title>diffalg.NthDerivation</title>
+
     <title>DA.NthDerivation</title>
     <short_description>the n-th derivation of a differential polynomial</short_description>
+
     <short_description>Computes the n-th derivation of a differential polynomial.</short_description>
 
<syntax>
 
<syntax>
$diffalg.NthDerivation(F:POLY, N:INT):POLY
+
DA.NthDerivation(F:POLY, N:INT):POLY
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
Computes the N-th derivation of the differential polynomial F. If the order of the result would exceed the given maximum order as implied by the current ring, an error is thrown.  
 
Computes the N-th derivation of the differential polynomial F. If the order of the result would exceed the given maximum order as implied by the current ring, an error is thrown.  
 +
<itemize>
 +
<item>@param F A differential polynomial.</item>
 +
<item>@param N An integer.</item>
 +
<item>@return The N-th derivation of F.</item>
 +
</itemize>
 
<example>
 
<example>
 
Use Q[x[1..2,0..20]];
 
Use Q[x[1..2,0..20]];
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
$diffalg.NthDerivation(F, 2);
+
DA.NthDerivation(F, 2);
 
-------------------------------
 
-------------------------------
 
5x[1,2]^2x[1,3] + 2x[1,1]x[1,3]^2 + 2x[1,1]x[1,2]x[1,4] - 6x[2,4]x[2,5]^2 - 3x[2,4]^2x[2,6]
 
5x[1,2]^2x[1,3] + 2x[1,1]x[1,3]^2 + 2x[1,1]x[1,2]x[1,4] - 6x[2,4]x[2,5]^2 - 3x[2,4]^2x[2,6]
 
-------------------------------
 
-------------------------------
 
+
</example>
 +
<example>
 
Use Q[x[1..2,0..20]];
 
Use Q[x[1..2,0..20]];
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
$diffalg.NthDerivation(F, 20);
+
DA.NthDerivation(F, 20);
 
-------------------------------
 
-------------------------------
 
ERROR: Maximum order is exceeded.
 
ERROR: Maximum order is exceeded.
Line 24: Line 30:
 
</example>
 
</example>
 
</description>
 
</description>
<see>Diffalg.Differentiate</see>
+
<types>
 +
<type>polynomial</type>
 +
</types>
 +
<see>DA.Differentiate</see>
 +
<key>NthDerivation</key>
 +
<key>DA.NthDerivation</key>
 +
<key>diffalg.NthDerivation</key>
 +
<key>differential.NthDerivation</key>
 
<wiki-category>Package_diffalg</wiki-category>
 
<wiki-category>Package_diffalg</wiki-category>
 
</command>
 
</command>

Revision as of 13:42, 22 April 2009

DA.NthDerivation

Computes the n-th derivation of a differential polynomial.

Syntax

DA.NthDerivation(F:POLY, N:INT):POLY

Description

Computes the N-th derivation of the differential polynomial F. If the order of the result would exceed the given maximum order as implied by the current ring, an error is thrown.

  • @param F A differential polynomial.

  • @param N An integer.

  • @return The N-th derivation of F.

Example

Use Q[x[1..2,0..20]];
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
DA.NthDerivation(F, 2);
-------------------------------
5x[1,2]^2x[1,3] + 2x[1,1]x[1,3]^2 + 2x[1,1]x[1,2]x[1,4] - 6x[2,4]x[2,5]^2 - 3x[2,4]^2x[2,6]
-------------------------------

Example

Use Q[x[1..2,0..20]];
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
DA.NthDerivation(F, 20);
-------------------------------
ERROR: Maximum order is exceeded.
CONTEXT: Error("Maximum order is exceeded.")
-------------------------------

DA.Differentiate