Difference between revisions of "ApCoCoA-1:DA.LD"
From ApCoCoAWiki
S schuster (talk | contribs) |
S schuster (talk | contribs) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>DA.LD</title> |
<short_description>the leading derivative of a differential polynomial</short_description> | <short_description>the leading derivative of a differential polynomial</short_description> | ||
<syntax> | <syntax> | ||
− | + | DA.LD(F:POLY):POLY | |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly. | + | DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly. |
+ | <itemize> | ||
+ | <item>@param F A differential polynomial.</item> | ||
+ | <item>@return The leading derivative of F.</item> | ||
+ | </itemize> | ||
<example> | <example> | ||
Use Q[x[1..2,0..20]]; | Use Q[x[1..2,0..20]]; | ||
− | Use Q[x[1..2,0..20]], Ord( | + | Use Q[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd")); |
F:=x[1,2]^2*x[1,1]-x[2,4]^3; | F:=x[1,2]^2*x[1,1]-x[2,4]^3; | ||
− | + | DA.LD(F); | |
------------------------------- | ------------------------------- | ||
x[2,4] | x[2,4] | ||
Line 17: | Line 21: | ||
</example> | </example> | ||
</description> | </description> | ||
− | <see> | + | <types> |
+ | <type>polynomial</type> | ||
+ | </types> | ||
+ | <see>DA.DiffTO</see> | ||
+ | <key>LD</key> | ||
+ | <key>DA.LD</key> | ||
+ | <key>diffalg.LD</key> | ||
+ | <key>differential.LD</key> | ||
<wiki-category>Package_diffalg</wiki-category> | <wiki-category>Package_diffalg</wiki-category> | ||
</command> | </command> |
Revision as of 13:35, 22 April 2009
DA.LD
the leading derivative of a differential polynomial
Syntax
DA.LD(F:POLY):POLY
Description
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly.
@param F A differential polynomial.
@return The leading derivative of F.
Example
Use Q[x[1..2,0..20]]; Use Q[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd")); F:=x[1,2]^2*x[1,1]-x[2,4]^3; DA.LD(F); ------------------------------- x[2,4] -------------------------------