ApCoCoA-1:Weyl.WMul: Difference between revisions

From ApCoCoAWiki
Stadler (talk | contribs)
No edit summary
No edit summary
Line 11: Line 11:
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.


<example>
A1::=QQ[x,d]; --Define appropraite ring
Use A1;
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
Weyl.WeylGB(I);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[d, x, 1]
-------------------------------
Note that Groebner basis you obtained is not minimal.
</example>
   </description>
   </description>
     <seealso>
     <seealso>

Revision as of 12:02, 7 January 2009

Weyl.WeylGB

Computes the Groebner basis of the ideal I using corresponding

implementation in CoCoALib.

Syntax

Weyl.WeylGB(I):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

This function computes a Groebner Basis for a Ideal I=(f1,f2,...,fr) where every generator fi should be a Weyl polynomial in Normal form.

Example

A1::=QQ[x,d];	--Define appropraite ring
Use A1;
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
Weyl.WeylGB(I);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[d, x, 1]
-------------------------------
Note that Groebner basis you obtained is not minimal.

See also

Weyl.WeylNormalForm