Difference between revisions of "ApCoCoA-1:CharP.GBasisModSquares"

From ApCoCoAWiki
(Added ApCoCoAServer note)
Line 1: Line 1:
 
   <command>
 
   <command>
 
     <title>Char2.GBasisModSquares</title>
 
     <title>Char2.GBasisModSquares</title>
     <short_description>computing a gbasis of a given ideal, intersected with <formula>x^2-x</formula> for all indeterminates x</short_description>
+
     <short_description>Computing a Groebner Basis of a given ideal intersected with x^2-x for all indeterminates x.</short_description>
 
<syntax>
 
<syntax>
$char2.GBasisModSquares(Ideal):List
+
Char2.GBasisModSquares(Ideal:IDEAL):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<par/>
 +
This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by x^2-x for all indeterminates. If x^2-x for
 +
all indeterminates is in the ideal (e.g. the set of zeros is a subset of {0,1}^n) this method should produce the Groebner Basis much faster!
 +
Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the FGLM-algorithm.
  
This function returns reduced Groebner basis for the ideal, intersected with the ideal, created by <formula>x^2-x</formula> for all indeterminates. If <formula>x^2-x</formula> for
+
<itemize>
all indeterminates is in the ideal (e.g. the set of zeros is a subset of <formula>\{0,1\}^n</formula>) this method should produce the GBasis much faster!
+
<item>@param <em>Ideal</em> An Ideal.</item>
Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex GBasis is computed and then
+
<item>@return The reduced Groebner Basis of the given ideal.</item>
transformed with the FGLM-algorithm.
+
</itemize>
 
     </description>
 
     </description>
 +
 
     <seealso>
 
     <seealso>
 
       <see>FGLM</see>
 
       <see>FGLM</see>
 
       <see>GBasis</see>
 
       <see>GBasis</see>
 
     </seealso>
 
     </seealso>
     <key>heldt</key>
+
 
 +
     <key>gbasismodsquares</key>
 
     <key>char2.gbasismodsquares</key>
 
     <key>char2.gbasismodsquares</key>
 
     <wiki-category>Package_char2</wiki-category>
 
     <wiki-category>Package_char2</wiki-category>
 
   </command>
 
   </command>

Revision as of 07:23, 23 April 2009

Char2.GBasisModSquares

Computing a Groebner Basis of a given ideal intersected with x^2-x for all indeterminates x.

Syntax

Char2.GBasisModSquares(Ideal:IDEAL):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by x^2-x for all indeterminates. If x^2-x for

all indeterminates is in the ideal (e.g. the set of zeros is a subset of {0,1}^n) this method should produce the Groebner Basis much faster!

Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the FGLM-algorithm.

  • @param Ideal An Ideal.

  • @return The reduced Groebner Basis of the given ideal.

See also

FGLM

GBasis