Difference between revisions of "ApCoCoA-1:BB.LiftNDViaServer"
(Updated description) |
(Added ApCoCoAServer note) |
||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | {{ApCoCoAServer}} | ||
+ | |||
If <tt>HomogeneousLift</tt> is set to <tt>False</tt>, the generators of the border basis scheme ideal <formula>I(\mathbb{B}_\mathcal{O})</formula> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. The input is a list of terms <tt>OO</tt> representing an order ideal and a list of terms <tt>Border</tt> representing the border of the order ideal. If <tt>HomogeneousLift</tt> is set to <tt>True</tt>, generators of <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> will be computed instead. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>. | If <tt>HomogeneousLift</tt> is set to <tt>False</tt>, the generators of the border basis scheme ideal <formula>I(\mathbb{B}_\mathcal{O})</formula> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. The input is a list of terms <tt>OO</tt> representing an order ideal and a list of terms <tt>Border</tt> representing the border of the order ideal. If <tt>HomogeneousLift</tt> is set to <tt>True</tt>, generators of <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> will be computed instead. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>. | ||
<example> | <example> |
Revision as of 14:11, 14 November 2008
BB.LiftNDViaServer
BBS ideal generators from lifting of ND neighbors
Syntax
BB.LiftNDViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
If HomogeneousLift is set to False, the generators of the border basis scheme ideal <formula>I(\mathbb{B}_\mathcal{O})</formula> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. The input is a list of terms OO representing an order ideal and a list of terms Border representing the border of the order ideal. If HomogeneousLift is set to True, generators of <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> will be computed instead. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.
Example
Use Q[x,y], DegRevLex; BB.LiftNDViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False); ------------------------------- [BBS :: c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3], BBS :: c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3], BBS :: c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3], BBS :: c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3], BBS :: c[3,2]c[4,1] + c[4,2]c[4,3] + c[2,2] - c[4,4], BBS :: c[2,1]c[3,2] + c[2,3]c[4,2] - c[2,4], BBS :: c[3,1]c[3,2] + c[3,3]c[4,2] + c[1,2] - c[3,4], BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4]] ------------------------------- Use Q[x,y,z], DegRevLex; BB.LiftNDViaServer([Poly(1), x, y, xy], [z, yz, xz, y^2, x^2, xyz, xy^2, x^2y], True); ------------------------------- [BBS :: c[3,1]c[4,4] + c[2,1] - c[4,2], BBS :: c[2,1]c[4,5] + c[3,1] - c[4,3]] -------------------------------