Difference between revisions of "ApCoCoA-1:CharP.GBasisF32"

From ApCoCoAWiki
(adding a description.)
m (fixing an copy & paste error.)
Line 8: Line 8:
 
This command computes a Groebner basis in the field <formula> \mathbb{F}_{32} = (/mathbb{Z}_{\setminus(2)} [x])_{\setminus(x^5 + x^2 + 1)}</formula>. It uses the ApCoCoA Server and the ApCoCoALib's class [[ApCoCoALib:RingF32|RingF32]].  
 
This command computes a Groebner basis in the field <formula> \mathbb{F}_{32} = (/mathbb{Z}_{\setminus(2)} [x])_{\setminus(x^5 + x^2 + 1)}</formula>. It uses the ApCoCoA Server and the ApCoCoALib's class [[ApCoCoALib:RingF32|RingF32]].  
  
The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 15 represent the field's elements. Details on this representation can be found [[ApCoCoA:Representation_of_finite_fields|here]]. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g.  
+
The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 31 represent the field's elements. Details on this representation can be found [[ApCoCoA:Representation_of_finite_fields|here]]. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g.  
 
<formula> 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</formula>
 
<formula> 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</formula>
 
So the number <formula>11</formula> corresponds to the polynomial <formula>x^3 + x + 1</formula>.
 
So the number <formula>11</formula> corresponds to the polynomial <formula>x^3 + x + 1</formula>.

Revision as of 11:32, 14 March 2008

Char2.GBasisF32

computing a gbasis of a given ideal in <formula>\mathbb{F}_{32}</formula>

Syntax

$char2.GBasisF32(Ideal):List

Description

This command computes a Groebner basis in the field <formula> \mathbb{F}_{32} = (/mathbb{Z}_{\setminus(2)} [x])_{\setminus(x^5 + x^2 + 1)}</formula>. It uses the ApCoCoA Server and the ApCoCoALib's class RingF32.

The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 31 represent the field's elements. Details on this representation can be found here. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g.

<formula> 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</formula>

So the number <formula>11</formula> corresponds to the polynomial <formula>x^3 + x + 1</formula>.


See also

GBasis

char2.GBasisF2

char2.GBasisF4

char2.GBasisF8

char2.GBasisF16

char2.GBasisF64

char2.GBasisF128

char2.GBasisF256

char2.GBasisF512

char2.GBasisF1024

char2.GBasisF2048

char2.GBasisF4096

char2.GBasisModSquares