ApCoCoA-1:BB.HomBBscheme: Difference between revisions

From ApCoCoAWiki
KHiddemann (talk | contribs)
mNo edit summary
KHiddemann (talk | contribs)
new alias
Line 1: Line 1:
<command>
<command>
     <title>borderbasis.HomBBscheme</title>
     <title>BB.HomBBscheme</title>
     <short_description>defining equations of homogeneous border basis scheme</short_description>
     <short_description>defining equations of homogeneous border basis scheme</short_description>
<syntax>
<syntax>
$borderbasis.HomBBscheme(OO:LIST):IDEAL
BB.HomBBscheme(OO:LIST):IDEAL
</syntax>
</syntax>
     <description>
     <description>
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
     </description>
     </description>
     <see>borderbasis.BBscheme</see>
     <see>BB.BBscheme</see>
     <key>kreuzer</key>
     <key>kreuzer</key>
    <key>bb.hombbscheme</key>
     <key>borderbasis.hombbscheme</key>
     <key>borderbasis.hombbscheme</key>
     <wiki-category>Package_borderbasis</wiki-category>
     <wiki-category>Package_borderbasis</wiki-category>
</command>
</command>

Revision as of 19:48, 8 November 2007

BB.HomBBscheme

defining equations of homogeneous border basis scheme

Syntax

BB.HomBBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.

BB.BBscheme