Difference between revisions of "CoCoASchool2007"
From ApCoCoAWiki
m |
m |
||
Line 29: | Line 29: | ||
Use Q[x,y,z]; | Use Q[x,y,z]; | ||
ZeroDimRadical(Ideal([x^2 + y+z -1, x+y^2 + z -1, x+y+z^2 -1])); | ZeroDimRadical(Ideal([x^2 + y+z -1, x+y^2 + z -1, x+y+z^2 -1])); | ||
+ | |||
+ | == the ideals for part h.) == | ||
+ | Use Q[x,y]; | ||
+ | [IsNormalPos(Ideal([x^2+y^2-1,4xy-2x-2y+1]),I) | I In 1..NumIndets()]; | ||
+ | |||
+ | Use Q[x,y]; | ||
+ | [IsNormalPos(Ideal([x^2-y,x^2-3x+2]),I) | I In 1..NumIndets()]; | ||
+ | |||
+ | Use Q[x,y,z]; | ||
+ | [IsNormalPos(Ideal([yz + z, y^2+y,x+y+z,z^2-z]),I) | I In 1..NumIndets()]; |
Revision as of 14:52, 18 June 2007
Tutorials of the Robbiano/Kreuzer track
Tutorial 1 (82kb)
the ideals for part c.)
Use Q[x[1..4]]; IsZeroDim(Ideal([x[1]x[3], x[1]x[4]-x[2]x[3], x[2]x[4]-x[3]^3, x[2]^2x[3]-x[1]x[3]^2])); Use Q[x[1..3]]; IsZeroDim(Ideal([x[1]^3 - x[2]x[3]^2, x[1]^2x[2]x[3] - x[2]^2, x[1]^2 + x[2]^2 + x[3]^2])); Use Q[x[1..4]]; IsZeroDim(Ideal([x[1]x[2]-x[3]^2,x[2]^2-x[3]x[4],x[1]x[3] - x[4]^3,x[2]x[4] - x[3]^2])); Use Q[x[1..3]]; IsZeroDim(Ideal([x[1]^2 - x[1]x[2],x[2]^2-x[2]x[3],x[3]^2-x[3]x[1],x[1]x[2] + x[2]x[3] + x[1]x[3]]));
the ideals for part f.)
Warning: Second ideal is NOT zero dimensional!
Use Q[x,y]; ZeroDimRadical(Ideal([x^3,x^2y,x,y^2]) ); Use Q[x,y,z]; ZeroDimRadical(Ideal([x^2 +2xy + y^2, xz+ yz, xy^2+y^3 + xy + y^2,y^4+2y^3 + y^2, y^2z + yz])); Use Q[x,y,z]; ZeroDimRadical(Ideal([x^2 + y+z -1, x+y^2 + z -1, x+y+z^2 -1]));
the ideals for part h.)
Use Q[x,y]; [IsNormalPos(Ideal([x^2+y^2-1,4xy-2x-2y+1]),I) | I In 1..NumIndets()];
Use Q[x,y]; [IsNormalPos(Ideal([x^2-y,x^2-3x+2]),I) | I In 1..NumIndets()];
Use Q[x,y,z]; [IsNormalPos(Ideal([yz + z, y^2+y,x+y+z,z^2-z]),I) | I In 1..NumIndets()];