Difference between revisions of "ApCoCoA-1:NC.IsGB"
m (insert version info) |
m (replaced <quotes> tag by real quotes) |
||
Line 13: | Line 13: | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | Please set non-commutative polynomial ring (via the command <ref>ApCoCoA-1:Use|Use</ref>) and word ordering (via the function <ref>ApCoCoA-1:NC.SetOrdering|NC.SetOrdering</ref>) before calling this function. The default word ordering is the length-lexicographic ordering ( | + | Please set non-commutative polynomial ring (via the command <ref>ApCoCoA-1:Use|Use</ref>) and word ordering (via the function <ref>ApCoCoA-1:NC.SetOrdering|NC.SetOrdering</ref>) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions. |
<itemize> | <itemize> | ||
<item>@param <em>G</em>: a LIST of non-zero non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | <item>@param <em>G</em>: a LIST of non-zero non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | ||
Line 22: | Line 22: | ||
G := [[[x^2], [y, x]], [[t, y], [x, y]], [[y, t], [x, y]], [[t, x], [x, t]], | G := [[[x^2], [y, x]], [[t, y], [x, y]], [[y, t], [x, y]], [[t, x], [x, t]], | ||
[[x, y, x], [y^2, x]], [[x, y^2], [y, x, y]], [[y, x, t], [y^2, x]]]; | [[x, y, x], [y^2, x]], [[x, y^2], [y, x, y]], [[y, x, t], [y^2, x]]]; | ||
− | NC.SetOrdering( | + | NC.SetOrdering("ELIM"); |
NC.IsGB(G); | NC.IsGB(G); | ||
True | True | ||
------------------------------- | ------------------------------- | ||
− | NC.SetOrdering( | + | NC.SetOrdering("LLEX"); |
NC.IsGB(G); | NC.IsGB(G); | ||
Latest revision as of 13:34, 29 October 2020
This article is about a function from ApCoCoA-1. |
NC.IsGB
Check whether a LIST of non-zero polynomials is a Groebner basis in a non-commutative polynomial ring.
Syntax
NC.IsGB(G:LIST):BOOL
Description
Note that, given a word ordering, a set of non-zero polynomials G is called a Groebner basis of with respect to this ordering if the leading word set LW{G} generates the leading word ideal LW(<G>). This function checks whether a given finite set of non-zero polynomial G is a Groebner basis by using the Buchberger Criterion, i.e. G is a Groebner basis if the S-polynomials of all obstructions of G have the zero normal remainder with respect to G.
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param G: a LIST of non-zero non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a BOOL, which is True if G is a Groebner basis with respect to the current ordering and False otherwise.
Example
Use ZZ/(2)[t,x,y]; G := [[[x^2], [y, x]], [[t, y], [x, y]], [[y, t], [x, y]], [[t, x], [x, t]], [[x, y, x], [y^2, x]], [[x, y^2], [y, x, y]], [[y, x, t], [y^2, x]]]; NC.SetOrdering("ELIM"); NC.IsGB(G); True ------------------------------- NC.SetOrdering("LLEX"); NC.IsGB(G); False -------------------------------
See also