Difference between revisions of "Package sagbi/SB.SAGBI"

From ApCoCoAWiki
m (changed category)
(added version info)
Line 1: Line 1:
{{Version|2|[[ApCoCoA:SB.Sagbi]]}}
+
{{Version|2|[[ApCoCoA-1:SB.Sagbi]] and [[ApCoCoA-1:SB.ReducedSagbi]]}}
  
 
<command>
 
<command>
Line 16: Line 16:
  
 
<example>
 
<example>
Use QQ[x[1..3]];
+
Use QQ[x,y,z], DegRevLex;
S := SB.SAGBI([x[1]^2-x[3]^2,x[1]*x[2]+x[3]^2,x[2]^2-2*x[3]^2]);
+
S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]);
 
indent(S);
 
indent(S);
-----------------------------------------------------------------------------
+
-- [
[
+
--  y^2 -2*z^2,
   x[2]^2 -2*x[3]^2,
+
--   x*y +z^2,
   x[1]*x[2] +x[3]^2,
+
--   x^2 -z^2,
   x[1]^2 -x[3]^2,
+
--   x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4
   x[1]^2*x[3]^2 +x[1]*x[2]*x[3]^2 +(1/2)*x[2]^2*x[3]^2 +(-1/2)*x[3]^4
+
-- ]
]
 
 
</example>
 
</example>
 
   </description>
 
   </description>
<!-- <see>SB.IsSagbi</see> -->
+
  <seealso>
<!-- <see>SB.IsSagbiOf</see> -->
+
    <see>Package sagbi/SB.TruncSAGBI</see>
 +
    <see>Package sagbi/SB.SAGBITimeout</see>
 +
    <see>Package sagbi/SB.IsSAGBIOf</see>
 +
    <see>Package sagbi/SB.GetSAGBI</see>
 +
    <see>Package sagbi/SB.GetTruncSAGBI</see>
 +
  </seealso>
 
   <types>
 
   <types>
 
     <type>sagbi</type>
 
     <type>sagbi</type>
 
     <type>poly</type>
 
     <type>poly</type>
 
   </types>
 
   </types>
   <key>sagbi</key>
+
   <key>SAGBI</key>
   <key>sb.sagbi</key>
+
   <key>SB.SAGBI</key>
   <key>sagbi.sagbi</key>
+
   <key>apcocoa/sagbi.SAGBI</key>
   <wiki-category>Package_sagbi</wiki-category>
+
   <wiki-category>Package sagbi</wiki-category>
 
</command>
 
</command>

Revision as of 17:57, 27 October 2020

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SB.Sagbi and ApCoCoA-1:SB.ReducedSagbi.

SB.SAGBI

Computes a finite SAGBI-basis of a subalgebra if existing.

Syntax

SB.SAGBI(G:LIST of POLY):LIST of POLY

Description

This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation runs until it is interrupted.

  • @param G A list of polynomials which generates a subalgebra.

  • @return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G.

Example

Use QQ[x,y,z], DegRevLex;
S := SB.SAGBI([x^2 -z^2,  x*y +z^2,  y^2 -2*z^2]);
indent(S);
-- [
--   y^2 -2*z^2,
--   x*y +z^2,
--   x^2 -z^2,
--   x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4
-- ]

See also

Package sagbi/SB.TruncSAGBI

Package sagbi/SB.SAGBITimeout

Package sagbi/SB.IsSAGBIOf

Package sagbi/SB.GetSAGBI

Package sagbi/SB.GetTruncSAGBI