Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"

From ApCoCoAWiki
m (Andraschko moved page BBSGen.JacobiLin to ApCoCoA-1:BBSGen.JacobiLin without leaving a redirect: moving into ApCoCoA namespace)
m (Bot: Category moved)
Line 57: Line 57:
  
 
    
 
    
   <wiki-category>Package_bbsmingensys</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Revision as of 11:36, 3 October 2020

BBSGen.JacobiLin

This function computes the K[c]-linear polynomial entries of the Jacobi identity matrix [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N}.

Syntax

BBSGen.JacobiLin(OO,BO,N);
BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let R:=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let OO be the order ideal and BO its order. Let Mu:=Len(OO) and Nu:= Len(BO). Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}. Let m,k,l in {1,...,N}.

This function computes the polynomial entries of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k]] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring K[t[1..N,1..N,1..Mu,1..Mu]].

Please note that this function does not work for the case, where N=2.


  • @param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return The K[c]-linear entries of the Jacobi Identity J^ikl. .


Example

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];
BO:=$apcocoa/borderbasis.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.JacobiLin(OO,BO,N);


[[   [    -t[2,3,1,2],0],
    [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]



BBSGen.JacobiFull

BBSGen.JacobiStep