Difference between revisions of "ApCoCoA-1:NC.CToCoCoAL"
m (Bot: Category moved) |
m (fixed links to namespace ApCoCoA) |
||
Line 9: | Line 9: | ||
<description> | <description> | ||
<par/> | <par/> | ||
− | Please set non-commutative polynomial ring (via the command <ref>Use</ref>) before calling this function. For more information, please check the relevant commands and functions. | + | Please set non-commutative polynomial ring (via the command <ref>ApCoCoA-1:Use|Use</ref>) before calling this function. For more information, please check the relevant commands and functions. |
<itemize> | <itemize> | ||
<item>@param <em>F</em>: a non-commutative polynomial in the C format. Every polynomial is represented as a LIST of LISTs, and each inner LIST contains a coefficient and a LIST of indices of indeterminates. For instance, assume that the working ring is QQ[x[1..2],y[1..2]], then indeterminates <tt>x[1],x[2],y[1],y[2]</tt> are indexed by <tt>1,2,3,4</tt>, respectively. Thus the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, []]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | <item>@param <em>F</em>: a non-commutative polynomial in the C format. Every polynomial is represented as a LIST of LISTs, and each inner LIST contains a coefficient and a LIST of indices of indeterminates. For instance, assume that the working ring is QQ[x[1..2],y[1..2]], then indeterminates <tt>x[1],x[2],y[1],y[2]</tt> are indexed by <tt>1,2,3,4</tt>, respectively. Thus the polynomial <tt>f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5</tt> is represented as [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, []]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | ||
Line 24: | Line 24: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Use</see> | + | <see>ApCoCoA-1:Use|Use</see> |
− | <see>NC.CoCoALToC</see> | + | <see>ApCoCoA-1:NC.CoCoALToC|NC.CoCoALToC</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Revision as of 08:22, 7 October 2020
NC.CToCoCoAL
Convert a polynomial in a non-commutative polynomial ring from the C format to the CoCoAL format.
Syntax
NC.CToCoCoAL(F:LIST):INT
Description
Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.
@param F: a non-commutative polynomial in the C format. Every polynomial is represented as a LIST of LISTs, and each inner LIST contains a coefficient and a LIST of indices of indeterminates. For instance, assume that the working ring is QQ[x[1..2],y[1..2]], then indeterminates x[1],x[2],y[1],y[2] are indexed by 1,2,3,4, respectively. Thus the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, []]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST, which is the CoCoAL format of the polynomial F.
Example
USE QQ[x[1..2],y[1..2]]; F:= [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, []]]; NC.CToCoCoAL(F); [[2x[1], y[1], x[2]^2], [-9y[2], x[1]^2, x[2]^3], [5]] -------------------------------
See also