Difference between revisions of "ApCoCoA-1:DA.PseudoAutoReduce"

From ApCoCoAWiki
m (Bot: Category moved)
m (fixed links to namespace ApCoCoA)
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
<ref>DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces
+
<ref>ApCoCoA-1:DA.PseudoAutoReduce|DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces
 
to zero with respect to the returned list.
 
to zero with respect to the returned list.
 
<itemize>
 
<itemize>
Line 24: Line 24:
 
<type>polynomial</type>
 
<type>polynomial</type>
 
</types>
 
</types>
<see>DA.DiffTO</see>
+
<see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see>
<see>DA.PseudoReduce</see>
+
<see>ApCoCoA-1:DA.PseudoReduce|DA.PseudoReduce</see>
  
 
<key>PseudoAutoReduce</key>
 
<key>PseudoAutoReduce</key>

Revision as of 08:11, 7 October 2020

DA.PseudoAutoReduce

Computes a pseudo reduced list of differential polynomials.

Syntax

DA.PseudoAutoReduce(G:LIST):LIST

Description

DA.PseudoAutoReduce returns a pseudo reduced list, i.e., every element of G reduces

to zero with respect to the returned list.

  • @param G List of differential polynomials.

  • @return An autoreduced list of differential polynomials.

Example

Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));
DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]);
-------------------------------
[x[1,0]^2 + 3x[1,0], x[2,0] + x[1,1]^4]
-------------------------------

DA.DiffTO

DA.PseudoReduce