Difference between revisions of "ApCoCoA-1:Torus Knot Group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 53: | Line 53: | ||
<Comment>The partial LLex Gb has 198 elements</Comment> | <Comment>The partial LLex Gb has 198 elements</Comment> | ||
<Comment>Torusknotengruppe_p2q3</Comment> | <Comment>Torusknotengruppe_p2q3</Comment> | ||
− | <Comment>Torusknotengruppe_p2q3 is isomorph to " | + | <Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment> |
</FREEALGEBRA> | </FREEALGEBRA> |
Revision as of 14:09, 17 July 2014
Description
The Torus Knot Group And has the following presentation:
tng(a,b)= < a,b| a^p = b^q = 1 >
Reference
Michael Eisermann, Knotengruppen-Darstellungen und Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000
Computation
/*Use the ApCoCoA package ncpoly.*/ // Define the variable q,p of the Torusknotengroup MEMORY.P := 2; MEMORY.Q := 3; Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsTorusknoten() Relations:=[]; //add the inverse relations Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation a^p = b^q Append(Relations,[[a^MEMORY.P],[b^MEMORY.Q]]); Return Relations; EndDefine; Relations:=CreateRelationsTorusknoten(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Examples in Symbolic Data Format
<FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier"> <vars>a,b,c,d</vars> <uptoDeg>14</uptoDeg> <basis> <ncpoly>a*c-1</ncpoly> <ncpoly>c*a-1</ncpoly> <ncpoly>b*d-1</ncpoly> <ncpoly>d*b-1</ncpoly> <Comment>Relation: a^p=b^q</Comment> <ncpoly>a*a-b*b*b</ncpoly> </basis> <Comment>The partial LLex Gb has 198 elements</Comment> <Comment>Torusknotengruppe_p2q3</Comment> <Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment> </FREEALGEBRA>